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Expression for the Drag Force

Idealised Case

A body of mass m moves with speed V through a medium, of density/c),
at rest. In an interval of length ESt, it captures the particles origi-
nally within a cylinder of length v 8 t, and cross section essentially
equal to the cross section of the body (A, say). Thus the accreted
mess is AV § t/), and if the increase in velocity is o V, we must have

o = (m + AV Stﬁ) (Vv +0V),

whence
nit = - av2 0. (1)
dt

Practical Assumption

This derivation takes no account of the thermal motion of the me-
dium. However the force (P) is found to be very nearly proportional
to Vi except for very small velocities, and we can put with close

accuracy
L2
P=- écDAvP R (2)

where CD’ vwhich is called the "drag coefficient," is close to 2 if
the mean free path in the medium is large compared to the dimensions of

the body, becoming nearer to unity if the reverse is the case.

If the satellite is rotating steadily, the components of the force
which are perpendicular to the relative velocity will cancel out almost
entirely. If the rotation is about the axes of greatest moment of in-
ertia, the mean value of A will remain constant. Ionisation of the at-

mosphere is not likely to be importent, since it is less than 5% at
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Expression for the Drag Force

evaluated at perigee, where the density is much greater than elsewhere

on the orbit. Thus we may effectively regard F as constant.

Then the drag force is

\i
- . L = - 1 - .
P = chwovz ECDﬂ0R4V) (5)
The component of V in the direction of the radius vector is

Ver v-r

— = (using (3))
= v sin X,
where 5 - X is the angle between the velocity and the radius vector.

The component of V in the transverse direction in the orbit plane is

v (bxg)
———-—-1—1;—’——- = §V2r2 - (1’_ '2)2 - ( sz) _\_rre}/ (hr)

(using (3))

gver2 cos> X - Q hre cos 1}/ (nr)

v cos X -§) r cos i. (since h = rv cos X)

The component of V in the direction of h is

V-h (). (rxn)
- (ustng (3))

L}

{(Q._«o 2 (Q D (z'x)}/h-

Now Qe£=Qrsing
=Qrsinisin(0\.) + f),
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Expression for the Drag Force 2.

heights of less than 400 kilometers. In any case & change of C, with

time will not affect many of the results.
Effect of Rotation of the Atmosphere

This effect is small, so & simple assumption is justified. Iet us
suppose that the atmosphere rotates with the same angular velocity as
the Earth, Q , say. Then its velocity at the point r, where the origin
is at the Earth's centre, is Q_ x r. If the satellite is at r with

velocity v, its velocity relative to the atmosphere is V, where

\i:y_-Qx;_. (3)

Thus(writing V = i!l , Vo= ‘Ki, etc.)

v = v? - oy (Q_XZ‘.)'*(QXEF

#

VQ_ZQ_h+(Q xz)e

v2 - EQh cos i + Q2r2c0s2 5 s

where h = r x v, is the angular momentum per unit mass of the satellite

about the Earth's centre, 8 is its declination, and i the inclination
of its orbit to the equator. We put

Ve = V2 F, ()

R 2.2 2
so that F =1 - Ethcos i, Q r 2cos S (4a)
v v

The third term in F may usually be neglected, being less than about
1/250, and the second term, which is of the order of 1/15, may be




Expression for the Drag Force L.

vwhere ) is the argument of perigee, and f the time anomaly. Also

Q-1=stinicos(w+f~x):

S0

v-n
-5 =Qrsinicos(w+f).

Therefore if _f;, é and fz_ are unit vectors in the radial, transverse, and

normal to orbit directions respectively, the drag force may be written
P= -—é—CDA/o \/Fve{sinxf_+ (cos X —Q-—r;c—?—s——j-'-)é

Qrsini
+ —

A
= cos (W + f) h \r
Since v = v(sin X i‘_ + cos X 3), this may be written

gu-gk/)\r%x-Qrcosi:s\_-*- Qrsinicos((A)+f) i:_l_}, (6)

where k = m N (7)

m being the mass of the satellite.

The Effect of the Tangential Component

The Equation of Motion

The component of P parallel to the velocity v is the largest part.
equation of motion, considering only this part, is

i:—gradv-%;k/Ovy; ’ (7a)
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The Effect of the Tangential Component S.
where V(r) is the gravitational potential.

The Energy

IfE = 3+° + V, then

& _=:. . N | 3
=Y -vY+y - gradV = akpv. (8)

Now V = - 7%— - R, where R is the disturbing function for the oblate-

ness, and so

Asa-R=-3x0v.

The change of the major semi axis 8 due to the drag is therefore

2.3

‘ k Qav
a=-=—7‘Q--—-—o (9)
//b

The Angular Momentum

Ifh=rxy,

.
— r = - 3
dt-gx;-;:xgradR -§k/0v1_1_.

The change due to the drag is therefore
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The Effect of the Tangential Component 6.
dh 1
a€=-~2~k/)v§. (10)

Therefore the direction of h is unaltered, eand so the position of the

orbit plane is unchanged by the tangential component.

Since h = {/{Aa(l - ee)}, with (9),
2
k/O(l (/A 1)

=--i'—k/0(l-e2)v(%-l). (11)

(De
n

In terms of the eccentric anomaly E,

. 3/2
_ . 2([1 +e cos B
a8 = kﬁ na (-———-————1 e o5 E) , (9=)
. 1/2
and e = - k/Ona(l - e2) cos E (1 + e cos E) (11a)

(1 - e cos E)3/2
Hence the secular rates of change are
3/2
l+ecos E
P( )1/2 dE , (12)
e cos E)

1l +ecos E
l -~-ecos E

n

o
a

1

2
and e T kna(l-e)f /)cosE
0

King - Hele uses the quantity x = ae, whose secular rate of change

J%d.E. (13)

is therefore

T=-t knaef O (e + cos E)

3
{4

e
tl+
o o
nle
o110
njn
=i

2
dE . (1h)

N
~|

——

—
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The Effect of the Tangential Component 7.

King - Hele's First Order Theory of the Orbit

In polar coordinates (r, @) in the fixed plane of the motion the

equations are

£-r8®=- 7&% -3 k/()v2 sin X,

i (15)
1a 2y ..1 2
s (r"e) = - 3 k/O v© cos X .

Putting u = % , and h = r2é , and eliminating the time as independent
variable, we obtain

2
g.‘...._u.i-u:#_ (16)
d92 h2

and %:-E#% o (17)

2u

We use the Poisson method of succesive approximation, putting

u = u, + 6 1% + é;au + ...
(18)
and h = hj + élh+° .
Unperturbed Solution
2
2
1
+ ='7&-=""""‘—',S&y
d92 ‘o h 2 F 0
0
(19)
To _,
a. 7

N O e

R e D N e 6

h [ S ] I 0
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The Effect of the Tangential Component 8.

whence ho,'and therefore PO s is constant, and we obtain the equation

of the ellipse

N - 20
Uy = Po{l‘l-eocos(e UOO)}, (20)

where € and (A)O are disposable constants.

First Order Solution

The equations are

d2 8 1u 5
—s+ S u=- -7&3 Soh (21)
ae h,
d §.h k2w
and — = - P3 ° (22)
211.O

where Vo is v computed for the unperturbed orbit (20). From these we
obtain

3
°S.u ad.u k OV
1 1 M 0 _ - W
TT® T R = g(o O) , say. (23)

d93

A particular solution is

()
d’— = LI, w) - ! 1
% (S W = g(o o) sin (8 - ') de",
%
whence
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The Effect of the Tangential Component 9.
e e" ‘ : .
81“(9) = ae" a6 gl6' - W) sin (" - 67)
90 eo
e o
= d@‘[ as" g(e' - uOo) sin (8" - 9')
eo 4
o
= a' g(e' - MJO) g}.- cos (@ -9') }-. (2k)
60

The equations (12) and (14) may also be derived from this by
considering the change in u from perigee to perigee, which leads to

the expression
277
2
Na=-q af g(f) (1 - cos £) (25)

for the change in one period of the perigee distance q and also the
change in u from apogee to apogee, which leads to
277

Aq' =-a®|  ar g£) (1 + cos £) (26)

for the change in the apogee disteance q'. Then transforming from the
true anomaly f to the eccentric anomaly E, and use of a = % (q + q'),

and x = 3 (q' - @), leads to the previously found forms of equations
(12) and (14).

The Form of the Atmosphere

We assume the surfaces of constant density to be ellipsoids of

revolution, with the Earth's rotational axis as axis of symmetry. If

444
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The Form of the Atmosphere 10.

we assume the ellipticity of each ellipsoid to be the same as that

of the geoid (King-Hele gives the value 0.003353), then at a height of
300 kilometers our ellipsoids remain within 1 kilometer distance of the
ellipsoids in which the ellipticity varies to maintain hydrostatic
equilibrium. Thus the polar equation of each surface may be written
5, (27)

r=r0%1~ € sin25+0(€

where S is the declination. Along a given radius vector, the density
is nearly proportional to exp (-r/H), where H is the "scale height."

If the perigee distance changes by more than about 100 kilometers, we
must take account of the variation of H with altitude, but in fact this
distance usually changes by less than 60 kilometers in the first 95% of
the satellite's lifetime.

We will not consider the variations of density with time. Such
changes do occur, with the period of the Sun's axial rotation, with
that of the Earth's rotation (due to differences of day end night),
and the sunspot cycle. These changes do not hovever affect the rela-

tive changes of a and x.

Thus we will take the density as

/:/Oexp {_, /ﬁ)r(l+ € sinag)% 5 (28)
vhere /O = 1/H.

King - Hele's Treatment of the Secular Changes

Confining ourselves to small orbital eccentricities, we use the

expansions



King - Hele's Treatment of the Secular Changes 11.

3/2
_(}l + e cos Egl/e =1+2 cos E+ 3/4e” (1 + cos 2E) + 0(ed)
(1 ~ecos E

non-

and (cos E + e) cos E + 3/2 e + 1/2 e cos 2E

l «~ecos E

1+ecosE)

11/8 €2 cos E + 1/8 e° cos 3E + 0(e3).

+

Also sin28 :%ssine {l-cos2(w+f)3

e

=%sin2 i %l—cos 2( W+ E) + e cos (29 + E)
- e cos (2uW + 3E) +O(e2 )}
Hence the equations (12) and (14) yield, using also r = a(l - e cos E),
2Tl
g:-g%nazkpoexp(v-ﬁa) dEexp(gaecosE)[l+2ecosE+

0

3/he2(l+cos 2E) ~c{1+ecosE-cos2(U\)+E) - 3/2 e cos(2 W+ E) +

1/2 e cos (2 W + 3E)} + O(e3,ce2)] 5 (2a)
277
and §=—21,[Tnaek/00exp(-ﬂa)f dEexp(ﬁaecosE)[cosE+
0

3/2 e + 1/2 e cos 2E + 11/8 e2 cos E + 1/8 e2 cos 3E -
¢ {cosE-l/2cos (2W+E) -1/2cos (2 W+ 3E) +e -
1/2 ecos 2w =-ecos 2( W +E) + 1/2 e cos (2 W+’4E)} +

o(e3, ce®) (30)
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King - Hele's Treatment of the Secular Changes 12,
vhere ¢ = %—ﬂ a € sin” i, which is usually less that 0.2.

Bessel Functions of Imaginary Argument

The furictions In(Z) =10 Jn( iZ) may be shown to satisfy the generat-

ing relation

o0

L 18 e (3 2] (31)

n=~- <o

from which, putting t = e > (i HO ), we see that In must be

T
In(Z)=§-l-7?-=- exp ( -inP )exp (Zcos ¥ ) a¥f
-Tr
27T
.Elﬁ[o cosn\o'exp(Zcos]o)d]O ’ (32)

after a little rearrangement.

Also vwe see that

277
exp (Z cos f )sinnf al =o0 (33)

So, putting ﬂ ae = Z = ax, equations (29) and (30) yield

—
3

3= - naak/Ooexp (ﬂa) [IO +2lje - I+ 3/L (IO + 12) &2 +

er + (3/2 I, - 1/2 13) e} c cos 2 W + O(e3, cez)] ,  (34)

44



King - Hele's Treatment of the Secular Changes 13.
and % = - naak/O exp(ﬂa) [Il +1/2 (31O +12) e -Ic+
2 .
- - W 4
1/8 (1111 + 13) e® + (I, - I) ce + 1/2 {(Il + 13) + (1, - 1)) e} cos 2 W+

o(e3, cee)] : (35)

Dinsion gives

- I I I I I
g%=-9+2e-%(3-19-+-1-2—) e+(~i-2--—§—-%:-[-3) ccos 2W +
1 1 1 1 1
o(e?, ce). (36)
Phase T
We have the asymptotic formula
2
L (2)~ 222 N G €l G W - N
- c e
as Z—>» =7, (37)

which is found to be useful if 2 >3, that is if ?'-I%> 3. Now since

H is about 50 kilometers within about 50%, and a is about TOOO kilometers,
this means that this formula 1s useful if the eccentricity is greater
than about 0.02. The part of the motion for which this is true is

called "Phase I" by King - Hele. Use of this formula in (36) gives

[ ]

aa _To 2

=2t o3& B 0w +0a(e?, ce) (38)
dx I1 ﬂa Eﬁeax 6:{ ﬁaxz ’

Differentation of (31) with respect to Z, and equating coefficients
gives

44




King - Hele Treatment of the Secular Changes 14,
dIn )
az -~ 2 (In-l + In+1) ? (39)

and differentation with respect to t similarly gives

= 1 -

nIn 2 Z(In'l In+l) ) (ho)
and hence, on eliminating In +1?

dIn n

4z + Z In = In-l' (k1)
With n = 1, this gives

2-1.Ld (k2)

1 1

This enables equetion (38) to be integrated to give (omitting the term
in cos 2w for the moment)

% 10 ) 51(6”} Zh,
& -8y = ) 4 -
I(é ﬁa

2
—3 in (%= 0 _’5_, 5, ae ), 43
2& 29,0 (xo) + (ﬂ ae é 3x3 (43)

suffix zero indicating initial values. Using the expansion for Il » this

gives, noting that the perigee distance q is given byq=a - x,

i 3H(l+eo e
a-9qy,=-23H|(1-% )Sbn(--)*-(e ~e)L—1,';————
+ 0(ae?, H3) (4k)
8.8
449
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King - Hele Treatment of the Secular Changes 15,

Returning to the term in cos 2 W , we note first that if we sub~
stitute (43) into (35) we obtain; for the dominant term,

vwhere K is a constant. Thus

x2=x§w2K‘t+c

We know that, from the oblateness effect, the most important change
of W with time is a linear increase or decrease, according to whe-
ther the inclination is greater or less than the critical value. 1In

either case, we may write to a first approximation,

2
UD=A+1=DC ,

where A and B are constants.

We may now include the cos 2w term in our result. Integration
of this term leads to the addition to the right hand side of equation
(44) of the terms

X

2
~
2! —;Q-COSQUO)

0

2xV|s|/7r
- Le 7TH2 \/I i/’]T %cos A cos (%7T¢2) d(i)
2x V Is|/77

axV|3]/77

B sin A sin (37792 ad [ . (k)
2x\/ I8l /77

{cos 2w

0

450




King - Hele Treatment of the Secular Changes 16.

Since the orbital period is given by T/Tb = (a/éo)3/2, a relation simi-

lar to (44) may easily be derived between T, e, T., e. and H.

0’ "0

This relation, and the complete expression (44), have been used
by King - Hele with success to derive H from the known values of q,
T and e of a satellite's orbit at two stages in its lifetime, and
from such determinations he has studied the variation in H with altitude
and discovered its large changes as the sunspot cycle progresses.

Phase 2

For e < 0.02, we use the relations (39) through (42) to put equations
(36) into the form

’ I
da 1 1 1 a
@a'z'=m+i-a§_+§7—dz%hz— 611’1(ZI1)’E

1

c cos (A + BH222) + O(e2, ec),

end from this is derived, by integrating and putting q = & - x,

 -q =-E [(1 _E {zlll(zl) Lo {zlxo(zl) ) 21,(2)
a

ZIIZZS a, Il(Z_l) Il( Z)

B| HoZ2

-Zl+Z+O.)+l+c%cosA Q¢
IBIH

IBIH
- sin A ]-— fIB|H d¢} + O(ea, 0-O6c):| R (k4s5)

where the suffix "1" indicates initial values in phase 2.
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King - Hele Treatment of Secular Changes 17.

For a treatment of orbits of high eccentricity, see King - Hele's
paper III.

The Effect on the Apse, Node, and Inclination Including the Non -

Tangential Components

We will now take account of all of the components of the drag force.
If we write R, S, and W for its components per unit mass in the radial,
transverse and normal to orbit plane directions respectively, then
from (6) we have

R:-%k/Ove sin X,

S--u-%kﬂ(vz cosX—er cos i), (46)

and W %k/)ersinicos(uO+f).

The equation for the apse longitude is (see e.g. Brouwer and Cle-

mence, p. 306),

ad

aw b cos f r(2:+ e cos f) sin £ 2,1
* "5 Rt nabe S +2sin” (31) T
na‘e
. 2
__:_k_/:zvsmf %l_%r QCOSi(Q«!—ecosf)}
e h
vosu? (31) WL (v7)

after some reductions, inawhich we make use of the relations rv cos X =

h = nab, end v sin X = == e sin f. The first term is en 0dd function
of f, and so its mean value over an orbit is zero. The equation for
the node longitude is
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The Effect on the Apse, Node, and Inclination 18.
ade reimn (W) o 1 kpv()
at - nab sin t " =% Tap r sin 2( W + f). (48)

This is also an odd function of f, and we conclude thaf the contri-
butions of the drag to the secular motions of both the apse and the

node are zero.

The equation for the orbital inclination is

di _rcos (W +f) .

_ _1kpov 2 2
o S = -3 —;ﬁ%—-f}r sin 1 cos”™ ( W + £) , (L49)

vwhich clearly hes a strictly negative secular part, whose leading term
in expansion in powers of e is

-%k/%a§2ﬁnie@(—@a)%. (50)
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The Dominant Features of the Long Period Libratibns of the Trojan

Minor Planets

The problem of three bodies possesses a class of solutions in which
the bodies move so that the triangle they define is always equilateral,
as was shown by Lagrange. This type of solution found application
in the study of the solar system with the discovery of minor planets
moving so as to appoximate to such a configuration with the Sun aﬁd

" and are

Jupiter. These planets are known as the "Trojan Planets,
named after heroes of the Trojan War. The present treatment seeks to
present the long period features of motion in the vicinity of the equi-
angular triangle configurations, making use of the elements of an oscu~-
lating crbit, and methods taken from the work on the motion of these
planets of W.M. Smert (Memoirs of the Royal Astron. Soc., Volume 62,
Part 3, 1918), and H.G. Hertz (A.J., Volume 50, p. 121, 1943),

taking into account only the gravitational attractions of the Sun and

Jupiter, which of course dominate the motion.
Tne Equations of Motion

Consider the system comprising the bodies S and J, of masses

and m., and position vectors and in an inertial frame,
Bs g S J

and & third body P with position vector ;Q p’ which has no attraction

on the other two. The equations of motion are

(] 0
7@8 = CmJ ( /—?r,)fS)

/%%%ws_ﬁﬂ | (1)

(r1)3

£ Pe @P+§ (2 - )

where r' = I ;ég.w #Q%

456
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The Equations of Motion 2.

We use the relative position vectors
zzﬂQP-’éS" andg‘_'=£J-,QS: (2)

and the first two of (1) give

:1:'_=" 3 7 (3)

where /‘l =C(ms + mJ)' ()

This is the equation of the Keplerian tﬁo—body problem, and we
suppose that its solution is an ellipse of major semi-axis a', and
eccentricity e', which is the orbit of J relative to S. The first and
third equations give the equation for the relative motion of P and

S as

§=_§m§£+CmJ<y3- x) g(J;3 | .

i A

Now in the equiangular triangle configuration, the orbit of P

relative to S 1is identical in size, shape and period to that of J

relative to S, and therefore is a solution of the equation
. LS
= - 6
¥ 7&—3 (6)

So we rewrite (5) in the form

.“ r
r=- 7/5%— + grad R, (7)
T

4517



The Equations of Motion 3.
1 I
vhere R = /u m'% Z& - R B (8)
(r')
.
with m' = J (9)

I

The solution of (6) will be regarded as the osculating orbit of P,

and R is therefore the distrubing function for the action of J on P.
Now if Cf is the angle subtended by P and J at S, we have

rr' =rr'cos Cf , and ng = r2 + (r')2 - 2rr' cos Cf . From
these we find that

a t ' (& O/
a};:/umi- ]'A3(r-r cosd)‘l'%é-sz—)-e- ’

J R . ! by
and d (cos d) z/u_ n %\ I‘Z3 ) (r.)Q} )

Both of these vanish if 8, J and P form an equiangular triangle,
since then r = r' = /\ , and (J = Tl/3. Therefore, since R only de-
pends on the pusition of P through its dependence on r and cos CT R
grad R vanishes while such a configuration holds, and the motion of
P is governed by equation (6). But one solution of this is the ellip-
tical orbit identical with that of J, but oriented at 77'/3 to it in
such a way that the equilateral configuration of SJP is always pre-
served, and this is therefore a solution of the original equations,
confirming Legrange's result for the case of the three body problem

here considered.

We suppose the motion of P to take place entirely in the plane
of the orbit of J, in which the time longitudes of P and J are \P

C. 458
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The Equations of Motion L.
and \‘V ', respectively, and their mean longitudes are /\ and A 'y
respectively. Then if the elements of the osculating orbit of P are

a, e, W, € , we use variables

6&:&—&',

b= A- A"
(10)
k = e cos W
and h = e sin WO ,

which satisfy the equations, derived easily from the Lagrange equations

for the elements,

a6 _ . .._.2 _OR _, B JR ., OR
at = na " o(&e) .2 |\XK ok onf’
(11)
dk _ A 2R B x OR
a4 = 2 Oh T, ZF730’
and dh A OR__B _, OR
at na2 ok 2nza.2 3%’
2 2 .2 o2
where A= V1 -e“=1- +h)+o(kl‘,h,kh2) (12)
2 2 2 2
and B_eegl-e -l+e}=l-f;(k +h2)+0(kh,hh,k2h2) (13)

“r 459




The Disturbing Function 5.

The disturbing function takes the form

1 I ' 1
R um %-Z_--(-;—)Ecosw-q/)-;}. (14)

We expand it, making use of the expressions in which 1 = A - W is

the mean anomaly,

2
rza{lﬁ'%e -ecoal-%e2c0521+o(e3)},

rcos { Y- W) = a{~3/2e+(l-3/8e2)cos1+%—ecos21
+3/8 &% cos 31 +0(e3)} P (15)
rsin (Y -w)=a (1-5/8e2)sinﬂ.+%esin21+

3/8 e2 sin 3% + O(e3)} ,

and their counterparts for J. Making use of these expansions, we find
for the secular and long =~ perio‘d part of R, that is, the part which

does not involve /\ or /\ ', and the part which involves them only in

the slowly varying combination \I/ = /\- A', respectively,
R = AL ,. 1 -cos O +X7} , (16)
a' \/2(1 - cos §)

vhere X =(§;?) gt 1 - cos 4) - 1 ?+
@ 2v/2(1 - cos ¢)

o ey )

& 8V2(1 - cos 4)) hv_2_(1 - cos ¢)3/2

+a(0) (6 +10%) + g (§) (kk' +bh') + g () (mk' - k') , (17)
1 & 3

T 1

- 2 +
BVE(L - cos 972 16VeVL - cos p

vwhere gl(@ = cos ‘b:
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The Disturbing Function 6.

g2(¢) - - 7 S + 11 - V1 - cos ¢ - cos 2¢;
lﬂ/—2‘(l - cos ¢)3/ 8'\/2—\/1 - cos (P 8'\/5

= - 2 1 -2c si
and gy (4) 5( T R ¢} a0
(18)

Terms of the third and higher degrees in "BST&", k, h, k' and h' have

been neglected.

The Relative Equilibrium Solutions

We suppose that the long period part of the problem hes been sepa-
rated from the short period part by Von Zeipel's transformation or an
equivalent procedure, and proceed to solve the equations for the mean
and long period parts of the elements. The transformations will add to
the disturbing function terms proportional to (m')2 and higher powers
of m', but we will work now only to the first order in m'. The equa-
tions then take the form

d 'na® 1 3 X
ajt'(ga)—'@—apré—[Sin(b§2-_\/_2_(l-cos¢)3/2}+2—é-:]

m'na’ sin¢ 2 - 1 75
'\/5(1 - cos ¢)3

"

Wil o
3% T | (29)
2
d . _ 2m' X : 3 X 92X
£=n‘n s Bga+m2:? ak+hah)
=n-n'"+mn s -2+2cos¢)
Va(1 - cos ¢)
T N W N
\ I 2V2(1 - cos §) {2(l—cos¢){.>/ J_l

(20)
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The Relative Equilibrium Solutions T.
dk m'na X m'na {~ 1 oX
i - + k| sin ¢ 2 - +
dt ) Soh 2a ’\/E-(l - cos ¢))3ﬂ2} aT:

) m.naghgl@) + h'g(9) + k'g3(¢)}
L m'nk sin ¢§ %’2 - - 2 } ’ (2

'
o}
2]

d dh m'na 99X ' . 1 QX
v B om L ma | be - Va1 - cos ¢>3/2§+ 5¢
- nm§2ke (§) + k'ey(D) - n'ay()] |
- 2 ' s - x
3 m'nh in¢{2 o~ con ¢)3/2§ ; (22)

The equation (19) shows that & & is constent only if ¢ =TT,

which is the collinear relative equilibrium configuration with P and
1

J on opposite side of §, or if § a =0 &and 2 - 372~ 8
Va(1 - cos ¢)
the latter requiring cos ¢ = %, that is, § = + T[/3. This is the
equiangular triangle configuration. Substituting in (20) shows that
4) is constant, since n = n', and, putting & = + T{/3 in (18), (21)
and (22) give -
% = -m'n {27/8 h - 27/16 h* F 27/16V3 k' } , (23)
end é‘% = m'n %27/8 k - 27/16 k' + 27/16V3 h'g . (2k)
We can have k and h constant provided
h=1/2n +/3/2%k' =e' sin (W' + 77/3) , (25)
and k =1/2 k' +3/2h' =e' cos (W' + T7/3) . (26)
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The Relative Equilibrium Solutions 8.

Thus e = e', and W = W ' + 7T[/3, confirming that the orbit of P is
congruent to that of J, but inclined to it at an angle TT/3.

Librations About the Relative Equilibrium Positions

Put ¢ = T7/3+ S ¢. Then, to first order inm', S §, and O s,
equations (19) and (20) lead to

9?(5&) = m'na'{9/2 § b £33/ (é’ﬁ)} +0 {(m')a}

(27)
and ( S ¢) =-22 Saa4 o(m'n) ,

from which
(S@+3v7emn = (6 9) +27/4 n'n® § ¢ = O(mk2) (28)

A trial solution o ¢ A exp ( A t) leads to
2 - , e
o- +3V3/2m'n = + 27/ m'n“ =0 ,
so that

daiﬂ§£n1e+mwm. (29)

Thus the second term in (28) is of order (m')3/2n2, and so is of an
order to which this equation has not been completely derived. Thus
the expression (29) cannot be extended to higher powers in m' without
computing some of the neglected powers of m' in (27), which would re-
quire knowledge of terms of order (m')2 in R.
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Librations About the Relative Equilibrium Positions 9.
To our accuracy, then, the solution for a and ¢ is

§¢ =Asin(VYt+€)

(30)
Saf = - V3 Acos (Yt + € )

t
where A and € are disposable constents, and )/ = 3—532- n. Now for

Jupiter, m' = 1/1047, and hence )/ = 0.08028 n. The orbital period of
Jupiter is 11.862 years, and so the period of the libration in a &and ¢

11.862 1
S 5758058 = 147.8 years. The amplitudes of the oscillations in a S ¢

and Sa are in the ratio 1 o \/3:T’, that is 1- 8.6 : 1, and these
correspond approximately to oscillations in the transverse and radial
directions, so that this librétion, vhen its amplitude A is smell, is
approximately an ellipse, with its centre at the equiangular triangle
point, whose axes are in the ratio of 18:6 : 1, the minor axis being

in the direction towards S.

i

For the eccentricity eand apse, put

k=e' cos (W'

i+

TT/3) + Ok, (31)
end h=e'sin (W' + T7/3) + S h.

The equations (23) and (24) now give

%E'( Sk)=-27/8m'n 3 h, (32)
and %_%_(S h) = 27/8 m'n 5 k.

The solution of these 1s

Sk
Sh

C cos (’7’t + S )
c sin\(’]’t-+ S )

(33)

L}
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Librations About the Relative Bguilibrium Positions 10.

where C and O are disposable constants, and 7= 27/8 m'n = (34)
0.003222 n; substituting the value for Jupiter. The period of this mo-
tion is 2 '}T/7 = 3682 years. Thus the eccentricity and apse longi-
tude are given by

e cos W =e'cos(w'_t7T/3)+Ccos(7t+ )
and e sin () =¢e' sin ( W + 7T/3)+Csin(7t+ S ) .

(35)

If ¢ <e', W librates about W'+ 7T/3, if C >e', W increases
monotonially through all values.

The treatment of these librations in rotating rectangular coordinates
in the restricted problem does not exhibit this very long period oscil-
lation directly, but shows a short period oscillation corresponding to
a small eccentricity, but with period differing from that of Jupiter
by an amount corresponding to the motion of the apse given by (35)

when e' = 0.

The relative equilibrium positions may be considered as a special
case of periodic solutions associated with a commensurability of period,
but differ from other ;uch cases in that there are here two independent
free librations @bout the solution, in place of only one, as in the
other cases, and also in that the mean orbital period in librating
solutions in the present case is always exactly equal to that of Jupi-
ter, while the librating and periodic solutions associated with other
commensurabilities in general have periods not exactly commensurable
with that of Jupiter; since the exact linear relation that exists in- |

volves the apse motion as well as the mean motions in longitude.
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LECTURE NOTES

MODELS OF GAS FLOWS WITH CHEMICAL AND RADIATIVE EFFECTS

F. K. Moore

I DIFFERENTIAL EQUATIONS AND BASIC MODELS

in the course of these lectures we will consider flows with chemical
activity and in which radiative effects are of significance, and in particular,
those dealing with problems pertaining to re-entry and propulsion. We will
be concerned mainly with chemical effects, and will not go into detail in con-
nection with electrical (ionization) effeckts.

Entry Phenomena

Briefly, the hypersonic entry of a vehicle into an atmosphere may be
described as follows: Initially, as the vehicle begins to penetrate the very
rarefied outer atmosphere, it is subjected to a bombardment by the gas par-
ticles in its path. In the region where the mean free path of the molecules
is very large compared with the dimensions of the body, the rebounding mo-
lecules do not interfere with other approaching molecules, and the vehicle
suffers only the retarding effect due to direct collisions with the particles in
its path. Further penetration into the denser regions of the atmosphere re-
sults in the establishment of a '"Flow field", characterized by a mean free
path somewhat less than the characteristic dimension of the vehicle. Thus,
rebounding molecules encounter other molecules in the region surrounding
the vehicle, so that the particles in the path of the vehicle are, to some ex-
tent, warned of its approach. As still lower altitudes are reached, these

warning signals coalesce into a strong shock wave standing ahead of the

vehicle,
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Atmospheric entry, then, involves a progression from free molecular
flow to continuum flow. In the region of the shock, collisions promote exci-
tation of higher levels of internal energy of the molecules ‘vibration and
rotation) resulting in first, dissociation, and if the velocity is sufficiently

high, ionization of the gas. The flow field is shown schematically in Fig. 1.

recom p ression
shock

ulerit

Fig. 1

Such flow fieldfof highly excited air are studied to determine rates of
heat transfer at the surface of the vehicle. In their study, one must
consider the behavior of the ''real' gas at elevated temperatures. Further-

more, the nature of the flow field governs the mechanics of the motion of




the vehicle, the drag being of particular interest. One also finds that ioni-
zation of the flowfield affects communications with the vehicle. Thus, the
study of high-temperature gas is of great importance.

As the temperature of a gas is increased on passing through a shock,

compositional changes will take place. Considering air, we have the follow-

ing dissociation processes:

as well as those involving NO formation, ionization, and others. Fig. 2
shows the concentrations of air versus temperature, at equilibrium. We
note from the figure that oxygen shows a marked increase in dissociation at
about 4000° K, whereas nitrogen does not dissociate appreciably until tem-
peratures in excess of 8000° K are reached. 8000° K corresponds to
velocities greater than those encountered in earth orbits, such high speeds

being characteristic of entry from a lunar trajectory.

. L (.):/Do _ﬁ\\T“_,_

[0}

\_

°

\_

(o4
o

mol, Concentration
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In atmospheric entry problems, radiant heat transfer may be important.

At orbital velocities, radiant heat transfer is relatively insignificant. How-

ever, at escape (capture) velocity typical of a lunar flight, radiation represents

a major portion of the heat transfer. The following relations indicate the
relative importance of convective and radiative transfer, and the dependence

1
upon velocity: Let q be the heat load to the vehicle:

ﬁ'conv. o= "/7; L US
Frod. o= L U

then

where /3 is the density, L is a characteristic body dimension, and U, is
the vehicle velocity. The very strong dependence of radiative transfer on
velocity is to be expected, because %m.‘l,c T‘} and T o< (/(,3. Thus,
one finds that at 25, 000 ft/sec. qpr3q is approximately 10% of the heat load,

while at 35, 000 ft/sec. qraq is the dominant heat load factor.

Nonequilibrium

The composition of the gas at any point in the flow field is, of course,
dependent upon the chemical kinetics of the gas. If the gas chemistry does
not have time to equilibrate, that is to say, if the composition is not the same
as the equilibrium composition for the local temperature, one has a non-
equilibrium flow. At very high speeds and very high altitudes, flows may

be dominated by nonequilibrium effects.

Of course, in a general sense, all flows are ''nonequilibrium'' situations.

In basic fluid dynamics, the Reynolds number

Re = pqu/%
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is a governing parameter, where U, is a characteristic velocity, L is a
characteristic length, /o is the density and /A the viscosity., Now, the
Reynolds number is in fact a comparison of relaxation time with the time of

passage of the flow. Consider the time required for a diffusive process to

occur, i.e., the relaxation time:

N 2
-L,r‘e'au.x. - /OL//
For very large distances, a very long relaxation time is required, similarly,
diffusive effects are slow for very small viscosity. Now, compare T

relax,

with the time of passage of the flow over a body of characteristic dimension L:
~
Co= LU

The ratio of these two characteristic times is

Drelow. o pLUs - Re (1)
T, as

This ratio is just the Reynolds number of the flow, and compares the time
for a mixing process to occur with the time of flow passage over the body.
Similar parameters appear in other flows, and by way of comparison,
we note that using the time of diffusion of a magnetic field yields
Lo,
L /b0

where Rm  is the so-called magnetic Reynolds number. The ratio of

- Luoo/“mv' € Rm

chemical relaxation time to the time of passage yields the following:

T‘heﬂh - Z\J\em. (2)
’DL E;U.u

-5-
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This may be of unit order in high-speed flows at high altitudes.

For ordinary, viscous hydrodynamic flows, Re >»> 1, i,e., the dif-
fusive relaxation time is much greater than the time of passage. In this case
the flow may be said to be dynamically 'frozen'' - there is insufficient time
for the decay process to reach equilibrium. If the chemical parameter
Tehom ,/’L\L >> | , we may speak of chemical freezing. Now, if the ratio
r{;che',h‘ﬂt‘= @'{,) one encounters serious difficulties in analysis, just as in
ordinary hydrodynamic flows one encounters analytical problems when the
Reynolds number is of order unity. On the other hand, if the ratio is much
less than one, (equilibrium flow) great simplifications result.

The study of chemically re‘acting flows is, as one would expect, con-
siderably more complicated than nonreacting flows. In the latter, one finds
similarities from dimensional analysis, and these can be used to great ad-
vantage. In chemical kinetics, however, such similarities do not generally
occur, and therefore one must attempt to solve particular problems and hope

2
to find simplifications which will render the analysis tractable,

Equations of Motion

From basic fluid dynamics we have:

continuity: 7;% + V'((ﬁ _V_) =0 (3)

Since the gas consists of several constituents we require a continuity equa-

tion for the separate constituents:
Dc, P ~
== - W =_2 .
" Dt L= (petny) (4)

where __:12__ —

= 2 .
j)_k—é-"t_'ﬁ-lv

and the other symbols are:




the mass fraction of the i'th constituent

L 28

(g the density
W': a production term to be discussed shortly
a/an the gradient normal to the surface

b(n‘,' the diffusion velocity of the i'th constituent

(4) states that the rate of increase of the particular species is equal to
the rate of production (by chemical reaction) of that species, minus the dif-

fusion of that species across some control surface. We note that:

The bracketed quantity on the right hand side of Eq. (4) deserves attention.

We can write:

* - m T
/36‘-_(1,1‘,‘=/om Zm, C Z,C (‘ j_HD%_T
& % Z%}j(‘ —J y < “ o

The terms here are:
DL'J diffusion coefficient for inter-diffusion of constituents.

%_‘1/3_\43 the "pressure diffusion', i.e., due to grad p. (In most
n flowfields ?o:/an_ may be neglected here.)

:_DT 3fuY  thermal diffusion term - diffusion due to temperature
, oXm
on gradient only, and is usually neglected, since the coefficient

is small.

Thus, U.,\L is seen to depend largely upon the concentration gradient.

Equation of state: P =, <Z )(Q_T‘ (5)

where Ga is the universal gas constant.

D o )
P3E e = 5 (M 5R)

-7-

Momentum equation:
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Energy equation:

3 , _ ) Ei”— » oT _ U -Hé
P%’"E—a“f - e 7&‘/‘*<an> *‘a’hDM /22 M 7)

and we identify the following quantities:
_ _ , (0)
H is specific enthalpy, and M = Z H: = ZC;(%V'F‘Q“ )
[ (4
where “&‘; is specific internal enthalpy and 'Qfo) is

the (potential) chemical energy of dissociation

%R is a heat source term, for example, radiation heating
AL (Qﬂ b the viscous dissipation term
an P
A %JV:L the heat conduction term

ZL(,I H: the diffusion of enthalpy

Lumped Constituents

A useful approximation, or gas model, frequently employed is that
of "lumped constituents'. In effect, we normally use the lumped con-
stituents idea in aerodynamic problems, letting air take on an average
molecular weight, etc., neglecting interdiffusion of constituents as well
as chemical reaction. For low-temperature problems, it is not neces-
sary that the constituents be similar.

In cases where chemistry is involved, we can use the same ap-
proach to simplify the analysis. Briefly, for air, we have a mixture of
O2 and N2, and in dissociating flows we have, in addition, O and N.
Let us combine these four constituents, considering O and N as a monatomic
gas which we denote by A, and Oz and N, as a diatomic gas, denoting it
Ap. We then have a two-constituent gas, and the i's of Eqs. (4) to (7) may
have the values 1,2. Now, this "lumping' requires that the molecular weights

of the two gases be nearly the same, as well as that there is no net diffusion
-8 -
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or reaction between gases lumped in the same group. That is, we assume
that the interdiffusion of O and N is small, and that the reactions between
O and N are negligible, and similarly for the "A,' portion of the gas, It
is also necessary that the heats of dissociation be nearly the same for both

reacting pairs. Thus, we shall consider reactions of the form:
A, == A+ A

and the right hand side of Eq. (4) becomes:

PeUp, = /"ﬁacs’

Binary Mixture

We will now use the subscript 1 to denote A atoms, and 2 to denote

A; molecules. The equation for specific enthalpy may then be writtensz

%{{Sc, +4c,_]_-- —-( Ty /T 'y_\} +C, ﬁ() (8(2)

5®c

where - !'is the specific heat at constant pressure of a monatomic gas,

-
Re, T,
;— —*+ 1is that of a rotationally-excited diatomic gas, and the term (-?‘%.I" \)Cz

(
accounts for energy of vibration, and finally, ¢ ‘ﬁ,o) is the energy of

dissociation, Tv is the characteristic temperature for vibration. Since
s about 3000° K for air, the quantity = for ai
T, i 0 q ity (eTV/'I'—l> x O forair
at room temperature. Also, we note that
O < 1—\‘/1.. ‘> < ’
-9~
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Lighthill Ideal Dissociating Gas

The foregoing gas model is not calorically perfect, for Eq. (82) indi-
cates that the specific heat depends upon temperature. Lighthill5 observed
that the bracketed quantity above was very nearly constant for a large range

/T | )
of temperature and he assumed that orelt 2 =T (midway between the
extremes @ and 1, thus rendering the model calorically perfect. This

is the first Lighthill gas approximation, and with it we have:

H - %l: (4+c¢) + C!‘ehm

(8b)

which is the relationship for the enthalpy of an ideal, calorically perfect,
dissociating gas. A further approximation due to Lighthill is as follows:
Consider the equilibrium concentrations of the atoms and molecules, accord-

ing to the law of mass action,
o)

z - ——
(_.f-__ = Lo g ®RT/m (9)
| —C/eq. R

where ¢ is the atom concentration., From this equation it is seen that

at high altitudes, i.e., low densities, one could expect to find higher concen-
trations of atoms. The characteristic density is actually dependent upon
temperature:
p.p o V.T__O "QTVA-> .

For temperatures of interest, /Qv exhibits a relative maximum, and is
fairly constant, and is therefore assumed constant, without introducing
serious error. In fact, we may add to Lighthill's argument..: the observa-

tion that /,.D reaches a maximum at precisely the temperature

- 2L
T €T/ —|

This is the temperature at which eq. (8b) is exact; i. e., the square bracket

-10-




& 22 O &N I T I = 2 O e

a
of Eq. (Ej\) for specific enthalpy is just equal to unity. Thus, Eqs. (8b) and (9)

are consistent descriptions of a dissociating gas which is just 50% excited
vibrationally.

The foregoing"Lighthill model" is not particularly powerful analytically,
though Tv is eliminated as a parameter. It does not result in any appreciable
simplification in machine calculations. The main value of the model has been
that it provides a standard dissociating gas in terms of which various compu-

tations and theories may be compared.

Dissociation Kinetics

Consider the reaction

Re_
D
where M may be A, or A. M is the third party to the process and is

the particle which, in collision, shares the energy of either dissociation or

recombination. We can write

-(SW M -
_v(;/_,_ = const. T ) [l—c+— 2—’};3c]\-('-f-)c TD/I @-c'f] (10)
I+ ¢ ,QJ) o

-S
where W' is the production rate for atoms (zero for equilibrium), and T

is a temperature dependence factor. This equation embodies the relation
between k)D and hR at equilibrium "‘(W':OB obtained from the mass
action law. The first square bracket accounts for the different third body
in the collision, i.e., whether M is A or AZ‘ The term (l—c)e:rpﬁ-in
the second bracket deals with the forward reaction (dissociation), while
the term (— g ct deals with the reverse reaction-(recombination). Sub-

stituting for %— from Eq. (9) renders the second square bracket zero,
>

which is the result desired for equilibrium. It is important to note that the

-11-

Ak
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dissociation in Eq. (10) is second order in density, while the recombination
term is third order in density.
In addition,

L ®
'QD 7~ 35 I , from experiment3: 4
ko™ To
D

Freeman, in a paper emphasizing the Lighthill model, has, in effect,
taken the first square bracket to be equal to a constant. This simplification
of Eq. (10) is therefore often taken as one of the specifications of Lighthill's

ideal gas.

II SOUND WAVES

Perturbation Equations for Chemical Nonequilibrium

For sound waves (acoustics) with chemical relaxation and radiative
effects, we first write the perturbation equations for a binary mixture of

gases. The primed quantities denote the perturbations, e.g.,

P=pPorp’ , P=C+p' | L=y

—-——

The linearized equations are then:

Continuity: zﬁ_l +—P0 74 '__\{/ =D
ot

oy’ /
Momentum: —_ 4+ Pp'=0
Re 5t *
Energy: pa aH/ - 2@_’ -
2t CES
State: ﬂ _ c./ - _ﬁ{ + Z’
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From Egq. ("‘"“ -FQ e D/T- , we substitute in Eq. (10)

for ,0/(0 and obtain [-(' C)E Tp ILT C S | ‘Ce’) e - T\P/’TJ
fO
which, after factoring, including EX‘ -C) "TD/T] in a propor-

tionality factor, and changing sign, glves

- W Coq
—f—' o "‘C I—C._?] (12)

All the quantities lumped into the proportionality factor are functions of
state. Now, if equilibrium prevails, € =Ce7_ and we have W' =0 . If

C -;/-C%‘ , the expression indicates that the production rate will vary, to
cause the mixture to tend toward equilibrium. In this derivation we Jsawigs
express«m# the mass fractionas (¢ = Co +C’ and assumed that ¢’ is
a small quantity. We also note that C'%_' = Co+ Ce}/ , where Co is the
free-stream equilibrium concentration, to account for the dependence of CQ_!’_
upon local temperature and density. From the proportionality, Eq. (12), we

can linearize the term,

to obtain C_O‘Z__'_C°<C’—§?’)and finally write

Wi = L (c’-c ’) _ 2c’ (13)

Po — T A

Here all the proportionality terms are lumped into T , which is a |
relaxation time, |

We now generate a sound wave within the gas and examine its effects.

If Co, Were constant, one would simply solve Eq. (13) to find: i
] -t/ |
e’= ca’?_ (i—¢e /"> |

- 13- 481

Vo 1



This is a relaxation equation, where the concentration goes from an initial
. . . /

to a final level following a simple exponential curve. However, since (e;

is a function of temperature and density, such a solution is rarely of value.

We now specify, as in ordinary acoustics, that the wave be curl-free,

so that:

vis Vo

where 4> is the potential. The acoustic equation obtained from Egs. (11)

and (13) is tow? 711,12, 13, 14

2
2 (2% g ">+M~— U = 14
The second bracket is the usual acoustic wave equation, with e , the

equilibrium sound speed (isentropic) given by:

Qe = |/_'_‘ (R is the universal gas constant
< YRT divided by the molecular weight)

’C* is a reference relaxation time, and if ’D* is large, we have frozen
flow, since the first bracket predominates. The first bracket is the
frozen wave operator, wherein the velocity of propagation is Q‘F , the
frozen sound speed. C(_‘: is found to be somewhat greater than %’and
one may think of the gas as being stiffer in the frozen flow case. If the re-
laxation time is short, i.e., t'* small, we may neglect the first bracket,
and we have ordinary equilibrium flow, with acoustic propagation of small
disturbances at the speed e,

1f ’U* is of the order of the period of the disturbance, the equation
can be solved exactly, but the solution is not particularly edifying. It is of
more interest to begin by considering a wave with a discontinuity, i.e., a

jump wave as produced by a piston. A general solution of the classical

wave equation is f:: 4)(7(_ a{) , which includes the step function

-14-
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4; = l (7( -af). We represent the piston and wave motions on a t-x plot,

as in Fig. 3.

Fig. 3

In the case of combined waves subject to Eq. (14), one expects a solution
closely related to that for the classical wave equé.tion. Accordingly, we

transform to coordinates g and 'Z , where
- —-
€= gax (X at)

= 1
1% a7

and (15)

a
Thus, % is the distance measured fromAcharacteristic as yet undefined,

and ? is the distance the piston has traveled. Eq. (14) becomes

- a“:c [%._493?% _(¢??§ *Zd’s!‘y*‘#&??\)l

al v
LSy - Sihge g0 o

where the subscripts denote partial differentiation. The highest order

derivatives must vanish
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&1

S Fgg —byq =0
and hence we must have ( = G‘F , and we conclude that jump-waves must
propagate at the frozen sound speed.

Now, the terms involving (b?g must also combine to equal zero,

thus: a ¢ 2

-2 (-2 ) +&° - el =

4 ( 237) T Py - L gg =0
¢ %
and because ‘a-f-
p)

Upon integrating once, along the wave front, we find

(bes),_ =7 ()

T=0
1 G
L(" Z(i“z

is a rather small quantity. This equation shows that the jump amplitude

where

S

n

decreases with distance, (i.e., 20(: X ) and we have a decay of amplitude

of the wave head, as illustrated in Fig. 4:

i AR

B AR

484




/

//’

/

/

pu 3

/

/

/
/The Telegraph Equation

Allowing € to approach zero, and redefining the piston-travel
coordinate by & 7;_ g » We get a new equation, after integrating Eq. (16)

once with respect to ; .

4}5; +¢;‘¢; =0 (18)

for small €& . This Eq. )18) is related to the telegraph equation, and
provides a model for the rel-axi-ng sound wave. Eq. (18) can be solved

exactly:

v/ = 9-(?+§>

b
aa—éij:o[z;/;(g_@) } ed'{\‘(@)&u)

where Io is a zero-order Bessel function of an imaginary argument,
and -[:(w) is a source function for the piston motion. The nature of the
solution indicates how the frozen wave decays and changes to an ordinary
wave. The decay is due to energy absorption in dispersing the wave.
Thus, when chemical activity is present, and we have nonequilibrium
conditions, there results an interplay between the chemical kinetics and
the dynamic processes. This results in the dispersion of the wave. The

relaxation time plays a rGle somewhat analogous to that of viscosity.

- 17 -



Waves Affected by Heat Sources

Turning now to the acoustic problem involving heat sources which
might be thought of as due to radiative heat transfer, we write the equa-

tions of motion for one dimension:

/
Continuity i)_.":; ' AR % =0
+ (<4
Momentum /o ii’ + _3_@’ =0
X
(19)
Ener oH’ Qﬁ/ =0 /(+/
&y o, .5.2. =2/(T")
State .ﬁp__/ - ﬁ -+ I-/

&  Ps Teo

and we note that the right hand side of the energy equation is a heat source
term and plays somewhat the same rdle as does the chemical production

term in Eqgs. (11). We also have (/= /. _ &s before,
x> P ELPPL

Manipulation of these equations yields

1 - - Y- { fort
bos - Ay = s (") (20)
where (L is the ordinary isentropic sound speed. A second equation also

results, which is
¢¥é -

where a’/}’ is the "isothermal' sound speed: For an isothermal wave,

. ;(%@)T:QT , and thus @y = &,

a ¢ . _ 2T/
Foe g - R 2L (21)

¥

The problem now is to combine Eqs. (20) and (21). If ?'/ = 3.’(7"/))

then, in principle, T' may be eliminated between Egs. (20) and (21).
In order to illustrate the effects of radiative transfer, whereby the hot
region loses heat to the cold region, we will be more specific, and write

the simple proportionality

?/=_[-}-;— &_@.]T’
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Then, elimination of T' yields Eq. (14) again, except that T is replaced
by k! Thus,

2
kE Ogb + D! ¢ =0 (22)

1
whe re D" is the wave operator, & - 4‘;! » the subscripts s and T
~ ¢ dxs

being for the isentropic and the isothermal sound speeds respectively, If

h is very large, we get the isentropic wave. If b, is very small we get
the isothermal wave. For cases where radiation is intense, the effect of the
radiative heat transfer will generally be to redistribute the energy and re-
duce temperature gradients. We note at this point that at is only
slightly greater tham a‘/y since Y is near unity, and one could also de-

rive a form of the telegraph equation Eq. (18)) for this heat addition case.

Relation to Radiation Transport 89

The foregoing assumption, that Bf.l/arzleauf, is not actually valid
for radiative transport, and we must examine more fully the transport of
energy by radiation to determine the proper general expression for f&.

Radiative energy emitted by an element of the hot 848 may be absorbed
by another element, at some distance, or '"penetration depth'' from the
first. This distance is expressed as a reciprocal absorption coefficient,
'/"(;) for a given frequency %/, For a gas, |/°<V could be as long as one
kilometer. If the gas is in a uniform state over distances much larger than
this, full '"radiative equilibrium! prevails, and there is no heat flux, be-
cause the heat emitted and absorbed by each element is the same. However,
in problems of interest in hypersonic flows, one must consider the hot gases

at the nose to be confined to a small region, only centimeters thick. We

cannot therefore, assume full radiative equilibrium (see Fig. 5).
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Fig. 5
In flow about such bodies, the path length of radiation is large compared to

a characteristic dimension for temperature change in the flow. It is

necessary then, to evaluate the integral,

oD
Ir = f (A, —E,,>on) (23)
)
where A,} is radiant energy absorbed, and E,, is energy emitted, in
the frequency range 2 5 » +d7. The theory to be outlined is in
'""Radiative Transfer' by 8. Chandrasekhar (Dover Press)8 , and is re-

viewed also by Lighthillg, Goulardlo, and Vincenti and Baldwin11

Quasi-eqguilibrium Assumption

In dealing with Eq. (23), it is commonly assumed that atoms and
molecules are in local thermal equilibrium, so that the gas element emits
as a black body. This requires that particle collisions be much more fre-

quent than photon emissions. Then, one may write

E-,) :4”0{75‘)

- 20 -
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o =

where B,) is the black-body energy flux obtained from the statistical

i +4
mechanics of a ''photon gas', and f; Bz)jp = —T'—’\- ol , 0°being the

Stefan-Boltzmann constant. Now, by the '"quasi-equilibrium'' assumption
the absorption coefficient ¢, is also taken to have its black-body value,

not only for emission, but for abgsorption as well:

4
Ay = x,)jd L, (D) Lo (23a)

For full radiative equilibrium , I,, = B,) 4T , but here we must imagine
t

that the '""'spectral intensity

)

at some other temperature. ) is the solid angle defining the direction

Iz) , results from emission somewhere else

of the incoming radiation (see Fig. 6). I, may be found from the

""equation of radiative transfer" (Chaﬁdrasekhar, page 9).

_3
75 = o (T, -B) (24)

which says that along its path, s, the intensity diminishes by absorption
(‘Xz)f,)) and is augmented by black-body emission <o<y- 8};) , scattering

into or out of the beam being neglected.

A0 Iy

T

Fig. 6
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Eqg. (24) may be solved for I,/) subject to boundary conditions about
bounding surfaces, and the result, via Eq. (23a), may be used to evaluate
?R from Eq. (23). In carrying out this prbceés, a constant value of &,
is commonly assumed. This disregard of the frequency dependence of ¢
is called the '"gray-gas'' assumption. (This has been recently described in

Ref. 11.)

The Rosseland Limit

5 cm. A char-

We have mentioned that l/0< may be as large as 10
acteristic length, say I, is likely to be much larger than this (radiative
equilibrium) only in astrophysical problems. If '/<>C is small (but not
negligibly so) compared with L, then it may be regarded as a photon free

path length, and in this "Rosseland limit", radiative transfer depends upon

grad T, just as heat transfer by conduction does. In fact, Rosseland found,

9e = N3 2:1394&&1”

EEEER

The foregoing Rosseland formula cannot be used for shock layers because

L << I/o( , in general. However, the quasi-equilibrium assumption is
usually quite good. Ordinarily, there are, say, 1010 collisions per sec.
for particles, and CX is 3 x 101%/105 or only about 10° photon inter-
actions per second, and thus, the requirement is met, At very high altitude,
the collision frequency would be too low to maintain quasi-equilibrium, and
radiation transfer would be ''collision limited"'.

Radiation pressure and the contribution of radiation to the internal
energy of the gas is usually neglected. The following example will serve
to indicate the magnitude of these effects and show why it is reasonable to
omit them. Consider the intensity of black-body radiation from a source

at 8000° K. The energy flux E,< is given by

-22 -
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To find the corresponding specific density Ep , i.e., the internal energy

of radiation, we divide by the velocity of light, C,

- 3 \
Ep = & =~ 39077 pule . 32%

30" > e ®

and the radiation pressure is
- 1 dyre
Thus, while the energy transfer by radiation is considerable, the internal

energy due to radiation, and radiation pressure, are both negligible when

3

compared to the enthalpy of the order of 108 erg/cm”, and the static pres-

sure of the order of 105 dyne/cmz, which are typical of hypersonic flows.

Application of Radiative Transfer Theory to Wavesll’ 12,13

The problem of the effect of thermal radiation on acoustic waves has
been investigated quite thoroughly in Refs. 11 and 13. In Ref. 11, two
dimensionless parameters of the problem are discussed; i. e., the '""Bueger

number',

Ng, = &L

and the ""Boltgmann Number'.

'NBO = M

o-T?3
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These two parameters govern the combination of fluid convection

and radiative transfer. Physically, these parameters have the following

meaning:
NB — 0 implies a completely cold gas (i.e., T O)
o
NB — O implies a very hot gas
o
. . 1
NBM.“" 00 implies a completely opaque gas (TOZ_ small)
NB‘*_) 0o implies a completely transparent gas

These upper and lower limits of the two parameters lead to limiting cases
of sound wave propagation with radiative effects. If NBO—;»OO (completely
cold gas) or NB&-» o, (completely transparent gas) the solution to the
problem is the classical isentropic acoustic wave, because no radiative
transfer takes place under these circumstances. If NGM*WO (completely
opaque gas), the classical isentropic wave is again the solution, because
in this case, although radiation may be intense, it is immediately reabsorbed
near its point of emission, and once again no net radiative transfer takes
place. If the gas is quite hot, and quite transparent, radiation tends to
smooth out temperature gradients, and an acoustic wave travels at the
isothermal sound speed rather than the isentropic sound speed. Thus waves
vary in their speeds of propagation, changing from the isentropic sound
speed at small NB».A to the isothermal sound speed in a range near
1.5 NM = r\f%Q33 . Also, within this range of ''velocity dispersion' the
damping of t}?e v:/ave due to radiation reaches a maximum. For large
values of N& , the wave speed returns to the isentropic sound speed,
and there may appear another sharp local peak in the damping.

2dd ke

. NI ¥ S . .
In the analysis of harmonic wavesl, it appears that in the classical

acoustic wave traveling at either the isentropic or the isothermal sound

-24-
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speed, there is a second, radiation induced, harmonic wavell, which has
no counterpart in classical acoustic theory. The speed and damping of

this wave are strongly dependent upon NBC> and N@M_ . Its speed varies
from infinite at N&A = 0, to zeroat Ng, =% for all values of N&, )
The damping varies from zero at N& = 0 to infinite at N& —o0c. For a
fixed finite value of N 8. » the damping goes from a finite value at

NBO 5 ® to zero at NBO = 0, at the same time the wave speed goes from a
very high value to a low value, then back again to a very high value. In
general, this second wave has greater damping and higher speed than the
classical wave, but at very high temperatures the damping may be compar-
able for both waves, and for a sufficiently opaque gas, the speeds may be

essentially the same.

as Ar

Y A
. A Ny ,._-—-—/ T

T TN 26

I LI LTI T T 4p

piston

13
Fig. 7

In some ways, study of the progress of a single jump wave
(rather than a harmonic wave) in a dispersive medium yields a plainer

picture of the trend of events. Fig. 7 sketches Baldwin's result13 for

- 25 .
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the pressure of a jump wave produced by an impulsively-moved piston.

Close to the piston (location I), the wave is only slightly dispersed, and
N&L << , because the wave thickness (L) is small, Thermal
energy will, however, begin to leak across the.w.atve front, as indicated

at location II, and a decay of the jump amplitude becomes evident. At

1II, where L x is no longer small, the front is very much flattened, and
the wave progresses at the isothermal sound speed. At IV, the profile
continues to spread out as we approach radiative equilibrium, but the wave
center now travels at the isentropic sound speed again, and we have CZ_R-"O 5
in the limit as NB«.—’ O. A complete discussion of the foregoing prob-

lem is given in Ref. 13.

| Waves of Finite Strength

Behind a strong shock wave there is a large, sudden temperature
rise. The very hot gases behind the shock will radiate and tend to smooth

out the wave (See Fig. 8).

| T

T

s ﬁ’Temp P Y‘O'Fl‘ Ie_

i %
| c_“
T Sheck
V4
/s {
-
T
& x

Fig. 8
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The temperature profile will tend to be that shown by the dotted line. Rad-
iation effects may then furnish the resistance, like that of viscosity, neces-
sary for shock formation, but acting at longer range,

Clarke12 has investigated the effects of radiative transfer on such
waves of finite strength. This investigation was carried out under the
grey gas and quasi-equilibrium assumptions already mentioned. It is
found that waves can be maintained entirely by radiation. The situation is
quite analogous to heat addition in a constant area channel, wherein heat
added always tends to drive the flow toward sonic speed. In this case, as
in Ref. 6, both classical and radiation-induced waves are included, the
entire spectrum of both being considered to make up the shock.

It is important to realize that radiative effects in flows can be
large, especially for superorbital speeds, and may play an important
role. The analysis of these effects is very complicated, but possibly one
may hope that some simplifying assumption will appear (similar to the
Telegraph Equation assumption) in order to make these problems more

tractable analytically.

III SHOCK WAVES

We now turn to the problem of blunt body flows with shock waves
and examine the effects of chemical nonequilibrium. We will also intro-

duce models for the analysis of such flows.

Description of Strong Shock

First, we will briefly review shock waves and the Rankine-Hugoniot
relations for very strong shocks. We distinguish between the two shock
configurations shown in Fig. 9(a)and (b). Fig. 9(a) shows a plane, freely

propagating shock, such as in a shock tube. Fig. 9(b) shows a bow shock
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about a blunt body traveling at hypersonic speed. In this case one has the

additional complications of the turning of the flow around the body, which

causes the shock to curve, and the existence of a stagnation point.

shall deal with inviscid flows unless otherwise stated.

(@ Plane Shock

Fig. 9

We shall consider only the very strong shocks in which dissociative

and radiative effects are important.

5‘\‘&3

Normal Shock Relations (plane, one-dimensional)

The differential equations (3), (6), and (7), neglecting transport

effects, are

=
9

Energy p A g_ﬂ = éﬁ

x <
Momentum _?_@ “+0U '_9__9(_ =0
20X /0

Continuity ° ( 0o b()

o

"
O
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The integrated forms of these equations apply across shock waves (we do
. R 29 P
not prove this, here). Now, from continuity U2 + puth _ po.
2z P 2

Combining this with the momentum equation, we find

oH -pugd
Prx = PYx

Integrating, we find He + _'sz{w—L = H, + lz b(,z' 3

where ©© gignifies evaluation far ahead, andj\fa.r behind, the shock.
Now, in the free stream, H 0o << Mg:. therefore, we may disregard Mo .
Similarly, 5‘.- W is small compared to H, .
Therefore, for very strong shocks we may write
H, = L Uso* (26)

which says that the enthalpy behind the shock is just the kinetic energy
ahead of the shock.

Turning to pressure, we have EB - _pp( oY which may be in-

? X2

tegrated since /OLL = const., to give
2
Pw*—ﬂwunq.:Pl'fﬂ,u‘

Now, @m << P (,(ao"" (since foo L(%L is just twice the free stream
dynamic pressure, ) and P, >> "
Thus:

P, & Pulo” (27)
The pressure behind the strong shock cor‘nes from the conversion of es-
sentially all the free stream momentum into a force, through deceleration
of the flow.

We now assume an ideal gas for the purposes of an order-of-

—~ 4
magnitude analysis, and note that G&/Gf =[-1/y.

. I . - 29 -
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- = 2
For the Temperature Ratio, H, = C'F.rn = 3 Uoo J o
~ L - 2
T QdoTOO >
7
Pressure ratio § L 2 Aol - y M (29)
oo (oo
Density Ratio * L = P Te z A (30)
oo (Poo T V-l
and we note that 2‘6’/(7!-— () is approximately 10. It is important to

note that the density ratio is finite, while the pressure and temperature
ratios are unbounded, increasing as the square of the Mach number.

Now let = &-1)z €, a small quantity, We now investigate the
order of magnitudes of changes in the variables behind the shock, since
we are interested in the concentration of atoms, rates of pressure change,

etc.
)
%‘</f_“wl> B ﬁ‘ajc(ﬁo) ~ Qz'é' = €

Also, since O, oo = @, U, , we have U./b(aro ~ €.

Thus, if € 1is small, pressure varies more slowly than density.

Also,

L2 ___l-_l__> - 2 (@

-ﬂioo 9’7%( Uoo o X </ooo uwl\) ™ é
so

;a—a-;'( ‘;%:1.) ~ £ ‘,—/l—é- = é z

()9/((0“(,{;) is of order 1 behind the shock and the derivative with
respect to the nondimensional distance x is of order & . (Note
that x is a distance characteristic of the relaxation thickness of the
flow.) We have then, the following order of magnitude relations behind
the shock !¢

- 30 .
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Puo U * R\ palte
H . 2 (H z
Uo ~ ) o X (b(ool ~ €

These relations indicate that concentration and temperature "trade off"
behind the shock, since /J) C and T are the only quantities which vary
appreciably. Enthalpy is very nearly constant, and pressure varies only
slightly downstream of the shock.

We now examine the processes behind the shock, and inquire into
the behavior of the concentration of atoms. We assume T]; = 60, 000° K

for air, Now by Eq. (10) for steady flow. of a Lighthill gas20

3 W, | (5+D o/
R e s T 0]

and we note that the square bracket goes to zero for equilibrium. This is

the ''production law' for atoms. Now when the gas is subjected to a step
increase in temperature, by passing through a strong shock, the first
chemical process will be dissociation, resulting from two-body (binary)
collisions. Initially, recombination (a ternary process) will have little
or no effect; however, as time passes recombination must become in-
creasingly strong, and finally balance dissociation at equilibrium.

Binary Scalingl > 21

For the present, we will confine our attention to that part of the

flow immediately behind the shock where we can neglect recombination.

Now, setting \/\/‘ //Q s _7'; , neglecting the second term in brackets,
and noting that p o P oo,
th ite that o< ! Because T =L/y
en we may write ’C"Q—QM- //0,o . passone / %,
- 31 -



we have Tﬁ:ﬁe % Uw

'CW“: /o L.

This ratio is a parameter of the flow, ﬂgo L occurs in a group and

constitutes a similarity parameter for Eq. (10a), recombination neglected.

If we recall the simple case

c = Cef' (l-e-f/?)

and replace t by Z/{,Lm and T ~ '//Ooc)then we have

X  posl
C = C7_ <|_ e - T.%oom>

If WU is constant, then Foo . becomes a scaling parameter for this
relaxing flow. The same holds true for the more complicated production
law given earlier, provided initial composition is fixed. We have what
amounts to a restricted Reynolds similarity. This is not surprising, of

course, because viscosity is a binary effect.

Calculations for a Lighthill Gas

1
Following Gibson 5, we consider the case where the pressure and

enthalpy are nearly constant. Now U -g—% = 'Q(T) (P I-C e ID/T

1+C
a
represents Eq, (10'\) for steady flow and no recombination, and

i} ‘Y_ﬂ" . (4 +C)
for a Lighthill gas. If H is constant (and it is, for all practical
purposes, behind the shock) this means that T':T(C) N aund
£(m) = FE)
We now define a new variable % such that

X = f;zo"—‘%‘

so that é%c: -&-%Q

J
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| f
Substituting into the rate equation,
- T/t
ic. = ‘?’(T\) 1=C e (33)

'a-x I+ C

so that the right hand side is a function of € only, and

X = L) ,n ¢c= IO

In this situation, if we plot the concentration ¢ versus X , we get

15, 21

the universal curve drawn by Gibson , as shown in Fig. 10

¢ L 200,000
\
50
c
X Ceq. for
o —_—p—_—— — —— ==
W \)’/ — SQKL |e»/e,‘
‘4

|
(‘X /200 k4, CX/W)s.L. X

2l
Fig. 10

Thus, a binary scaling scheme is found for strong shock waves. Note
that the variable X contains (oo |. as a parameter, and depends
additionally on  WUee and 7C/L.

G:'Lbson21 was able to show that even the departures from the
universal curve of Fig. 10 can be predicted when binary scaling is

not quite applicable. In the complete equation

A _ de (|- £ ._f-_’.‘_en’/"',) (33a

- - ) T

B AT © p i-¢
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The second term is replaced by I/Ioo ( T 1is the final equilibrium
value of I(c),) Justification of this step is described in Ref. 21,

for cases of high equilibrium dissociation level. The solution of

Eq. (33a) is, then,
I = I.(I- e-X/I‘”> (33b)

This remarkable formula recalls the simple relaxation law pre-
viously discussed, where I(c) now plays the role of <., The
effects due to recombination are shown as dotted lines in Fig. 10, and
appear only as departures from the universal plot near the end of the
curve in question, Physically, we expect that the lower the density, the
higher will be the proportion of binary collisions, i.e., those promoting
dissociation. Recombination results from three body collisions, and is
proportional to Vs 3 » and thus appears as a small effect near the ends
of the curves. The scaling law renders the initial (dissociation) portion
of the curves similar, regardless of initial density (altitude). For the

scaling law to be useful, there are two required conditions:

1. Shock wave must be very strong.

2. Altitude must be very high (i.e., /° small),
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Scaling Limit

60+

Clearly, as .X increases, the recombination effects become more
important, and Fig. 11 {(from 21) indicates qualitatively the limits of
XA&& , the value of X beyond which the reccembination term can no
longer be neglected. The criterion chosen for Fig, 11 is that the re-
combination rate is approximately 3/10 of the dissociation rate .
Referring to Eq. (33a), we see that when ﬁ is small (high
altitude) a larger value of ¢ , and hence X , ¢an be reached
before the second term is comparable to 1. Also, when the speed is
lowered, the density is not greatly affected, but Cs 18 much less,
so the effect of ¢?% in Eqg. (33a) holds down the value of that term as

X increases, and again a higher value of X is permitted.

woo-
[\
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Calculations for Real Air

The calculations just described for a Lighthill gas certainly em-
phasize the value of binary scaling for strong shock waves at low density.

There have been many calculations of chemistry behind strong shocks in

16, 17

real air These may be presented in terms of the scaling variable X,

The set of reactions that have been studied are

02 =2 20 §
N, == 2N

—

Dissociative

Exchange of

"Shuffle!" reactions

N+ 0O, = NO + O
(34)

NO+N = N, +0

N+O Z nNot+ e Ionization
In general the ''shuffle reactions' are predominantly to the right, which
promotes the formation of oxygen atoms, and encourages the depletion
of N by recombination into N or NO. In other words, the mechanism
for the recombination of nitrogen is more powerful than the recombina -
tion mechanism for oxygen. The shuffle reactions are binary in nature,
and thus have particular importance at high altitude.

Fig. 12 shows various concentrations plotted versus X , as is

done in Ref. 2). These are simply sketches, and details should be

sought in Ref, 21,

5br  of—
L] Uo= 15000fks N[ Ue=15000 fps. 0,

4
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The sketches indicate that binary scaling works for real air about

as well as for the Lighthill gas.

Fig. 13

Also illustrated in Fig. 13, is the phenomenon of overshoot of NO
and @ , typical of high-energy flows (here, the shock speed was
23, 000 fps).

The overshoot of electron concentration may be understood as a
consequence of the abnormally high translational temperature just be-
hind the shock. Since translation equilibrates first, the ideal-gas
temperature is reached - about 25, 000° K for 23, 000 fps. at 200, 000 ft,
altitude. In about 5 mm behind the shock, O dissociation manages
to take up its equilibrium share of energy, and, by then, the transla-

o

tional temperature has dropped to 8000° K. Of course, while the tem-

perature is at the higher level, radiation and ionization are intense.
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Vibrational Coupling

Actually, the overall process of equilibration is strongly affected

by vibration. Fig. 14 sketches the sequence: First vibrational

T

24,000K

Too

Fig. 14

excitation begins to rise (Rotation is nearly as fast as translation),

and dissociation follows. But, since dissociation occurs chiefly from
excited vibrational states, vibration and dissociation are kinetically
coupledls. Also, when dissociation does occur, it depletes the higher
vibrational statesl9. Thus, at high energy and low density, the kinetic
model for air must include vibration. We note, however, that vibra-

tional excitation is a binary process, and the previous scaling consider-

ations apply.
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IV. BLUNT BODY FLOWS

We turn now to problems of the inviscid flow about blunt bodies mov-
ing at hypersonic velocity, and consider the effect of chemical reactions.
We shall be concerned with very strong shocks, as before, but now the

shock is curved about the body, as sketched in Fig, 15,

Fig. 15

The N e wtonian Approximation

The radius of curvature of the nose is denoted by L with O as
the center of curvature. The standoff distance of the shock is ) , and
we introduce the independent variable é to measure position. For

example, if we wish to investigate the streamline which passes through

i
o
ot
£
Q
=)
=
o
Fh
o
o

T 1a B
e shock by the angle Uy
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and later position by ‘9 . The free stream velocity is L(OO and at A its
component tangential to the body is U oo 44 B, With the assumption of a
strong shock wave, the order of magnitude of the shock,thickness may be
determined as follows: From Eq. (30), /0//990 ~ '/é , and & is rather
small. Now, consider a cylinder in the free stream (with axis parallel to
the free stream velocity), subtended by an angle 6 . The mass flow

through a cross section of this cylinder is ~~
P oo Uso (L anm @) =T

The tangential flow in the region between the shock and the body, at a

location é, is ~
O Up Sm b (Tr Lw@)g

These flows must be equal, and after cancellation, we have

s _ ~
r=&~ ¢

and the ''shock layer' 1is quite thin compared with the body dimension.
This result leads to the '"Newtonian'' model for the analysis of blunt
body flows, wherein the colliding particles are assumed to give up their
normal component of momentum on impact with the body (or the shock,
which is the same thing, by assumption) and subsequently move tangent
to the surface. This is a particular kind of reflection, neither specular
nor diffuse,

For a plane, freely propagating shock, we found that the pressure
changes slowly behind the shock. With a body immersed in the flow,

however, the shock is curved and the pressure variations are large.

We have, by direct application of "Newtonian'' theory, (P/((a,oueé') OCZC’-OQl Q)
and hence -?-(—&t_ ~ ’1 where 27 is the ratio of distance
3% \Q,Us )
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measured along a streamline to the nose radius L. Previously, for a
plane shock, we had that pressure gradient was of order € ( Z being

measured relative to a relaxation distance.) Correspondingly, we now

have %(—%) ~ € (N ' for the plane shock),
and, from the momentum equation, L . Vg (~ € for
oo

the plane shock).

The Newtonian theory requires modification to account for centri-
fugal forces and effects of shock-layer thickness, Centrifugal force cor-
rections for a sphere20 modify the result 0; o= (Cgolh so that

O): O (a sort of centrifugal separation) is predicted to occur at @ = 77'/3.

Binary Scaling

If we re-examine Eq. ( 3% ), we see that the crucial thing for binary

scaling is that H remain nearly constant, This is so for blunt body flows,

because ¥-| is small. The pressure is not constant, but its variation
can be absorbed in X Thus, Gibson and Marronez1 show that we can
carry over the binary scaling analysis to blunt-body cases, { Dbeing given

by the same function of X :

¢« I (%)
where

- &
X = [Ez2 (344

S  being measured along a streamline, (P and (A may be found from

Newtonian theory, and we observe the binary scaling rule that results:

X = [22: — 1 fnlun,b)

-41 .
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Scaling Limits

From Eq. (34&>, we see that as we approach the stagnation point of
the body, U — O and thus /X-’%, so we cannot expect binary scaling
to apply right there. On the other hand, as we travel along a streamline
like B-A in Fig. 15, we know that P—o at 60° (for a sphere), and thus
'X_ reaches some limiting value, which might be less than Krec!

Fig., 16, which sketches information in Ref. 21,
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compares Xw‘and X hea under a number of conditions. For L = 30 cm
and altitude 200 kft, the limiting value of X along the streamline
6, = arcsin (1/5) just equals ’)&M‘, the scaling limit for that altitude.
Thus, for streamlines beginning farther from the axis, the universal
curve of Fig. |O applies all the way to 60°, while along streamlines closer
to the axis the function ¢ (X) will break away from the universal curve.

Of course, even right at the axis ( 90-'-‘—0), the actual departures
from binary scaling occur near the surface, so one may speak of a re-
combination thickness 5/‘% which is perhaps a small fraction of the shock-

layer thickness, or ''stand-off distance" é . Fig. 17 shows how Sm/g
. . 21
varies with /Om L R

Fig. 177

s - 43 .
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It appears that recombination plays a negligible role at 200 kft, if L is
less than that for which . L % IO—{ Viscous effects at the nose should
be included. They scale completely with ﬂeo L , as indicated by the
boundary layer thickness SL-L on Fig. 17.

In summary, we can use binary scaling for the nose region, at
high altitude ( ﬂm L small) for flow suddenly heated by a strong (hypersonic)
bow shockZI, concluding that dimensionless variables depend on /Jw L for
the same [({, and same initial composition. Under these conditions

nonequilibrium chemistry and ionization may be analyzed quite simply.

Example: Stand -off Distance21

21
Fig. 18 shows Newtonian calculations of S/L showing the ex-
pected scaling for small values of A L. Also shown are two points

gotten from computed solutions with full air chemistry. Their agreement

pa
L @ \// Newton'an
Cllchcmisﬂiry:
L=5.Scm @ I50 * oo keft
=250 cm € ys0kf | 200 "
o = |
10=5 lo~% P L
Fig. 18°
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with the scaling rule, even for scales differing by 100, is an excellent

indication of general applicability of the binary model.

Exact Solutions for Blunt Bodies

The '"exact' calculations just mentioned were done by a method
due to Lickzz, whereby a shock shape is assumed, and the full equations,
with chemistry are numerically integrated inward to ''find the body''.
Hall, Eschenroeder, and Marrone 17 made calculations by this method,
using the 5 reactions cited previously. Here, we encounter a feature not
present in the plane shock problem: Now, as the flow proceeds, it cools,

and the recombination may quench before equilibrium is reached.

e B oW

17

Fig. 19

Fig. 19 shows this effect’ ' for two streamlines, at (/((>° = 23,000 fps.

The ''faster' streamline, B, shows more freezing effect than A, as we

- 45 -
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would expect. The freezing of N is more pronounced because the exchange
reactions tend to deplete N, and keep O high. Thus reactions are binary,
and are the favored recombination reactions at low density.

The freezing effect just described is important to assess in

preparation for analyzing afterbody and wake flows.

V NONEQUILIBRIUM IN NOZZLE EXPANSIONS

We have, so far, briefly discussed cherﬁical effects in high velocity,
blunt body flows, with particular reference to the nose region. We now
consider the flow over the remainder of the body, and examine the effects
of chemical activity upon this ''downstream' portion of the flow field. Re-
ferring to Fig. 20q we consider a pair of stream surfaces extending down-
stream from the nose region. Following these streamlines, we find that
in the afterbody flow the gas undergoes an expansion, with cooling and
chemical recombination. We can think of this flow as being like the ex-

4
pansion of a very hot gas through a nozzle23’ 2 "

The nose region corres-
ponding to a reservoir of hot dissociated gas. We, then, learn much
about the flow over afterbodies by considering channel flows, as illus-
trated in Fig.ZOL. Of course, such channel flow studies are of interest

not only for hypersonic applications, but also for rocket nozzles and shock

tunnels.

_46_

St4




O
.

EX F‘QMC‘ X V]a
Channel -

CoolJ Low press.
5 lfu‘gl« Speecl

\

20b

- 47 -
515



Expansion and cooling experienced by the gas in passing through a
nozzle of course results in chemical recombination and reduction of the
high levels of other modes of excitation. Thus, processes occur which
are the reverse of those discussed previously for the nose region of the

blunt body.

Equation for Nozzle Flows with Nonequilibrium Chemistry

We write the equations for channel flow, neglecting transverse vel-
ocity components compared to the axial components. Then, measuring X
down the channel, and assuming a single mode of dissociation, the equa-

tions reduce to

Continuity of Species ! U 2_9_ = __\/Y_L
? /°
Continuity ! p dUA = const
Momentum . 242 + 50,0\ =0 (35)
a
Energy H + 4+ u* = comst
State ' dO (i C)ﬂ T

We consider, as usual, that the enthalpy H consists of the internal
degrees of freedom plus the energy of dissociation. (We do not use the
Lighthill model at this point.) In the solution of these equations, the pro-
duction term is the major problem, since rates of production and recom-
bination are involved, in a complicated manner, in channel flows.

For the nonreacting nozzle flows, there is a critical mass flow de-
termined by the mass flow at the throat of the nozzle when M =1. Mass
flow at the throat is thus a parameter of the problem, with za,>:< (sound
speed at M = 1) being known. With chemical activity, however, a* is
no longer known in advance, and the consequent lack of a definite mass-
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flow parameter makes real numerical (machine) solutions for the problem,
via forward integration from equilibrium, very difficult. Another diffi-
culty concerns initial departures from equilibrium, where D"c/axn =0
Computationally, one has something similar to an essential singularity;
thus, integration away from equilibrium tends to require very fine-grained
calculations.

Early work in the field of nonequilibrium channel flows was done by
Bray23, and by Hall and RussoZ4. Hall and Russo used, first, a Taylor
series expansion of about 10 terms in I/V—A- (A is area + throat area)
to carry the calculations to the throat. By iteration of these results, a
mass flow was established. Then, downstream of the throat, a modified

Runge-Kutta scheme was used. For a hyperbolic channel shape,

5(7
A =lv 5

where L is a suitable length parameter, the results®? appear as

follows, for atom concentration versus area ratio

0 zero vete (Ce. in reservoir )
v

1
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If equilibrium is maintained throughout the flow, which implies a
recombination rate approaching infinity, we get the "equilibrium" curve
shown above. As a result of cooling and expansion, density decreases; we

recall that

TD/ T c 1]

P

YF'- oc [L-o)e”

Since density decreases, the rate of recombination decreases, therefore
there is a point where the process of recombination cannot keep up.
(That is, the three body collisions necessary for recombination become
too infrequent to maintain equilibrium.) The result is that freezing occurs,
rather suddenly, as shown in the upper branch of the curve in Fig. 20¢,
Concentration is constant downstream of the freezing point. Such freezing
of the flow is of great importance in two cases:
1. Propulsion systems.

In a rocket nozzle, the freezing results in the loss of

kinetic energy, because some of the energy is frozen

in the form of dissociation and vibration energy, and

is thus not available for propulsion.

2. Hypersonic wind tunnels.
In such test tunnels, we do not wish to have a dissociated
flow at the test section, therefore we must take care to

avoid too-early freezing.
In Fig. 21, a plot of temperature versus area ratio is shown for

infinite, finite, and zero rates of recombination.




s+

Infinite rate

2
Fig. 211

From Fig. 21 we can see the effect of the recombination rate upon
the temperature of the flow. ( To is the reservoir temperature.) Com-
parison with Fig. 20 shows how temperature and concentration 'trade off'.

A plot of pressure versus area ratio exhibits the following general

form:
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We note that the difference between infinite and zero rates is not as
great as for temperature. Thus, velocity is not coupled to concentration
as closely as is temperature. The foregoing figures are based on a tem-
perature of 6000° K and a pressure of 100 atmospheres in the reservoir.

The final frozen level of concentration is lower for longer channels

of the same shape, since the longer the channel, the greater the time during

which the recombination process can proceed. Plotting length versus

frozen concentration, we have a relationship as shown in Fig. 23

10
L
o
l -
| ' -
"I :é C

froz,

24
Fig. 22

Approximate Freezing Criteria

It is of interest to predict the occurrence of freezing in the
channel, but since channel flows are characterized by recombination
processes, there is no possibility of applying a binary scaling law.

The change of concentration along an equilibrium path is fixed by
the geometry of the channel. We must now inquire whether the recom-
bination rate will be sufficient to maintain equilibrium, and if not, where

._52_
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along the channel freezing will occur. This problem has been studied by
BrayZS, and Hall and Russ024. Bray assumed that the rate for equili-

brium flow is given in terms of channel geometry, etc., so that @C/D{’)Q( )
is known. One then asks when this is greater than the recombination 4

rate:

De
Dt

)
2 R
> Conef (p T < >’c7_
2 ) . . . .
where /0 T C7' is the recombination rate term. The left hand side
is an aerodynamic requirement, and we ask when it is greater than a
. . -5 Syt s
quantity proportional to /311— C'L_ Bray employed the equilibrium mass

action law for a Lighthill gas to eliminate the density, so that

@17y ~ (55)) et s
-5-7-4

Then Bray's freezing criterion is

oy
(&

(+a)T = ’ (36)

Hall and Russo assumed that

€ _ _ C"C‘;"F"n-'f‘e
r

ox

where I (a function) represents a reaction length or typical path

for relaxation increasing down the channel, C finite is the

eq’

(fictitious) Ceq for the temperature and density calculated on a finite-
rate basis. One may easily show that

Y
o

5%

Cep Finite
p

[ 4

(37)
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where the upper inequality holds for equilibrium flow, and the lower in-
equality holds for frozen flow. The freezing criterion is defined,
_concentration arbitrarily, by the equal sign. Reference to Fig. 24 indi-

cates these three cases.

-Ft\l’ll\'l'Q

rate

infinte rate
Cﬂ%‘ far I\V\'P'l\ﬂih‘,-e ra"‘i'r'“o( P

A

14
Fig. 24

At point A, (Fig.24) where the curve splits into three possible paths, we
can predict aC/QZ, The average rate during the abrupt freezing process

is % (oc /&Z>Ln‘?. Also, since( 'F"VL/‘/’e drops so quickly to zero, its

QZ,

average value is _'i C‘nf The freezing criterion is then
T,
2¢ <_f,_>
Pxling. T \F Jint,

Machine calculations show the freezing process to be rather sudden,
and at point A the freezing line breaks sharply away from the infinite or

finite rate equilibrium lines.
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Entropy and the Sudden-Freezing Model

The question of the entropy of the flow, while one of great interest,
is also one of considerable difficulty, Entropy is defined only for a state
which can be reached by an equilibrium process. For the early, equili-
brium flow the entropy is well defined, and the expansion is isentropic.
The change from equilibrium to frozen flow is one which is nonisentropic,
unless the freezing is mathematically sudden. However, completely frozen
flow is again isentropic, because chemistry no longer participates.

The formula for entropy of a gas in equilibrium is
A 3 - A E_I't 60\/ (38)

Using Lighthill's gas and the state equation,

4
L A

This form, as it stands, cannot be integrated to give a variable of state,

except for frozen concentration, that is, for ¢ constant. Then,

_?fl_{_.._, 2 L.T —(|+c),¢q/>+- Coreih (39)

For equilibrium, we have another relation,

ct f_?;e‘ Tv/‘r‘
| =¢ R

by which one of the original three variables may be eliminated. Thus,

_iﬂ = 34T "'(""6’31——9—2 +c +2£«-,—f_—¢ +Ce-u.dj(40)

applies for equilibrium. The constant in Eq. (39) may be chosen so that

Segq. goes over to S¢;.  continuously at a sudden freezing point.
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The Mollier Diagram

Bray noted25 that his freezing criterion, (Eq. 36) gives another rela-

tion between C or T, which, substituted into Eq. (40), gives the freezing

state in terms of S only!

Sy = c(S) 4y T, = T(Ss) (41)

Thus, one may construct a Mollier-type diagramzs, as shown schematically

in Fig. 25.

Peondd
T comsh,

C condant

re€z in
line

N
)
w

Fig. 25

According to this diagram, if we start a flow from a point of known
enthalpy, A,/ the process proceeds along the vertical isentrope through the
"freezing line''. Actually, of course there may be a narrow freezing zone
rather than a freezing line. In any case, this kind of diagram represents
a very useful condensation of results, when freezing is sudden.

-56-
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1s vigorous, via the NO reactions, and O concentrati

An approach to the problem of more gradual freezing has been made by

26 : 1ipes .
considering two subsystems” which flow out of equilibrium with each other.

Then one can define entropy for these subsystems, each of which is inter-

nally, in equilibrium. However, this is a dubious approach.

Caglculations for Real Air

More complete machine calculations have been made34, including the

five reactions (Eq. (34)) important at high temperature. As usual, the

exchange or shuffle reactions favor recombinaticy of N. Results of cal-

culations for the concentrations of the various species are shown in Fig. 2634.

—_— {-«m tte v aTe

—_— infinite rate

| e} 100 A 00D

34
Fig. 26

An important feature of such a flow is that the recombination of nitrogen

on, as a result,

stays high, freezing almost immediately.
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We must now attempt to apply these results to flows about bodies,

fini'te vate
——— o iafinite rafe
.
~
S~
T~
—
S

Sheek

:
|
‘- S am s

A e W

TR

Fig. 27

Stream Tube Applications

Referring to Fig. 209 we return to the idea that the flow through a
stream tube about the body is essentially described by a nozzle flow model
such as we have just been discussing. The region of hot dissociated gas
near the stagnation point serves as a high pressure, high energy reservo:r.
In general, the nozzle flow analysis cannot be applied without some reser-
vations, due to the transverse gradients existing in the flow field. If,
however, we know the nature of the flow (i.e., the streamlines}) we can
apply the nozzle flow analysis, with the most serious error being due to
the pressure mismatch at the boundaries between stream tubes. Recall-
ing Fig. 22, we note that the pressure is not seriously affected by the

chemistry, however, and we can accept the nozzle flow analysis as a

- o8 - 526

TN



a R S N AN B B ae

reasonable approximation. A large uncertainty exists in connection with

conditions at the nose of the body, however; in general, we cannot be sure

that we have an equilibrium reservoir.

To illustrate the uncertainties involved we compare the sketches,

Figs. 27 and 28,

‘?“ﬂ:')‘@ Vd{f@
wmfinite rate

Fig. 28

In both, we plot concentration against distance along the oody. In Fig, 27

dissociation rate is rapid, and equilibrium is reached before cooling

begins. Freezing then occurs downstream. In Fig. 28 we note the

e
R
]
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possibility that the concentration in the nose cap region fails to reach
equilibrium. Clearly, the dynamics of subsequent freezing will be differ-

ent than in the case of the equilibrium reservoir.

VI TRANSPORT PROPERTIES

The final topic of this series will deal with the effects of viscosity
on nonequilibrium flows. We first consider transport properties, and
in Part VII will deal with viscous flows. We will attempt to find flow models
for nonequilibrium flows including viscous terms. We have already noted
that chemical activity and radiative transfer result in phenomena not un-
like viscous effects, i.e., damping and dispersion in acoustic waves and
shocks. The time lags encountered in chemical kinetics relate to the time

lags in viscous effects.

Equations of a Binary Mixture

We shall consider a multicomponent high temperature gas (in
particular, air). The transport quantities appear as terms on the right-
hand side of the conservation equations of Part I, and now these are re-

written as
- S5 (P ) ‘a%l <ﬂﬁg—q
5%(/*%%) (42)
5n) + 2DV 4ol (55 -2 4]

We indicate the physical meaning of these terms:
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é’%’l(ﬂ ﬁ'ﬁ) 1s a concentration gradient effect;

-a- (/L(a__l’i is the viscous shear stress term;
on\" 2n

and  p3h 42 N ap(% - 26 )]
consists of a term to account for enthalpy increase due to dissipation, a
heat conduction term, and a term to account for diffusion of enthalpy.
Enthalpy flux arises from the unequal transport of atoms and mole-
cules. If more atoms than molecules are transported across a surface,
then, since the atoms carry the dissociation energy, 4\(0)) there is a net
flux of enthalpy across the surface. Thus the final term consists of the
diffusion velocity quantity, /0&%% , and f‘“) is the property trans-
ported. We assume that ‘e\w) is much greater than the internal energy of
molecules, i.e., H{Wf << cﬂ@
From the Egs. (42) we see that we must specify three mixing par-
ameters, [9’, >\ , and /M . We now define two important dimensionless

parameters:

Prandtl number:

Fos Al (43)

which compares viscous effects to heat transfer effects; and

Lewis number
Le = Aé?fg (44)

which compares diffusion effects to heat conduction. The Prandtl number

and Lewis number are both of unit order, and Pr X 3/4. Lewis number
is frequentlyapproximated by unity; however; this may not be very
accurate, since Lewis number depends upon temperature approximately

as shown in Fig. 29,
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3000 2000 °K

Fig. 29

Using the nondimensional parameters, we note that

D (e 428
S%L(/"@%?T) "9?(%/“@“

45)
JH
() = () 2{E SR L]

noting that  QpT = H- ‘e\m X

If we assume LA.= 127, the last term on the right hand side vanishes,
and the energy equation is much simplified, since the heat flux and energy
equation do not explicitly involve chemistry. We assume, then that dif-
fusion and viscosity effects are so related that Lo = 1.

We note at this point that gas viscosity increases with an increase in
temperature, as opposed to the decrease in viscosity with temperature in
liquids. One may explain this behavior by considering the interpenetra-
tion of particles, which is greater for more energetic (higher temperature)
gas particles. Thus a hot, or rarefied gas has a high viscosity. In disso-
ciating flows, one finds that atoms have a greater penetrating depth than

molecules, and therefore the dissociated gas is more viscous than un-

dissociated gas. This is shown qualitatively in Fig. 30.
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Fig, 303

The collisional models used to calculate the viscosity of multi-
component, high-temperature gases are various; the matter is reviewed
in Ref. 37.. Actually, it is usually more important to have the right model
for high-temperature molecular collisions than it is to account for the
presence of atoms38. For flow problems, viscosity enters through the
product/’//(, , and e is a stronger function of ¢ (through the state equa-
tion) than is 44 . Inany case, a simple perturbation forrnula.38 accounts

quite well for the dependence of M oon c:

M= Mo, [' to.3¢c + G—C&)l
Only

An important question at this point is: Where do we measure vis-
cosity in flows with large temperature variations? We wish to use a
constant value for viscosity (or, rather density times viscosity), but
what value is most representative? In general, the answer is to evaluate

5-,’ i v,
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viscosity in the hottest part of the flow. This is because the hottest part
is also (usually) the region of lowest density, and hence forms a very thick
layer compared with cooler parts, Properties of the thick layer dominate
transport, and the viscosity of this layer rather well represents the ef-

fective viscosity of the whole flow.

Surface Catalysis

Consider a semi-infinite region bounded by a solid surface, é.nd
denote fhe surface conditions by the subscript zero., If an atom strikes
and adheres to the surface, a second atom may strike it and recombine,
the two then leaving the surface as a molecule. In such a recombination,
a three body collision is not required, since the wall acts as the third
body. The recombination is essentially a one body process. A wall may,
then, act as a catalyst for recombination, and surface catalysis is of ’
great importance in nonequilibrium flows. We can write a surface

catalysis rate equation as fol lows:

2¢ = RT (¢~
(P&’?)Tl')mﬁ r‘/T—f‘_;'; ¢ Cd’ﬁ*hw—a (46)

Where the left hand side is the rate of arrival of atoms at the surface,

by diffusion, [ is the catalytic efficiency of the surface, the radical
is a molecular velocity term, and the last bracket is the departure
from equilibrium concentration at the surface. The rate of arrival is
then seen to depend upon the degree of nonequilibrium at the surface.

¥ (= Ca'f‘ there is no net arrival of atoms, i.e., ?)C/Bn = . The
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quantity r is usually not well known since the physical chemistr vy

of catalytic reactions is not fully understood.

VII VISCOUS FLOWS

We have seen how chemical relaxation leads to the dispersion of
waves, and other effects analogous to those due to viscosity. Often,

relaxation and viscous processes must be considered together.

Couette Flow

Among problems of viscous, heating conducting flows with disso-
ciation, the case of Couette flow is the simplest. Consider two infinite
parallel plates, separated by a distance & , the lower plate being

fixed and the upper plate moving at some velocity (/LS (which might

be very high). In such a flow the shear force is constant, and the velocity

and temperature profiles might be sketched in Fig. 31, Many flows of

interest can be represented, at least qualitatively, by suitably defined
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Couette flow situations. A variation of this problem is to hold both plates

fixed. and then impose a temperature difference between the plates,

Ay ed Wy . Ts -~

T

S

Njfe—— o

Fig. 31

The differential equations are:

Momentum: _3_(4_ = const. (47a)

oy
Energy: Lpr U % N %.%L' +le-1)Pr ﬂ(”%%f] - cond  (47D)

Atom Production: &(L&/u %> = W, (47¢)

Boundary conditions would specify velocity and temperature at the two

surfaces, as well as the catalytic condition

(La,u %)w =BT _—r'rz;w‘ (¢ - Ca?)'/ (47d)
at the wall.

Now, one can eliminate/( between Eqgs. (47a) and (47b) and in-
tegrate the resulting equation35. Thus, if Q= | . and both walls zare

cold (Fig. 31), one gets

- . _u
-%-;/ X1+ £ Pr Hal(’[("g ‘"'&} (48a)
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Maximum enthalpy occurs when the above bracket is 1/4, i.e., at

U _
Ug = 1/2, Then,

.H_ = E‘.ﬂ&i
HW)MH | + 2s (48b)

and if

Mg = 25, (H),,, ®30 ot gq-1is

That is, the enthalpy at the center line is 30 times that at the plates. The
foregoing indicates the large amount of heat which is introduced by viscous
dissipation, most of which is absorbed in dissociation,

Consider now that the plates are both stationary, so that there is no
dissipation. However, the upper one is at a very high temperature (See
Fig. 32a. Eqgs. (47) give relatively simple solutions for this problem,
which is quite a good model for the conditions found at the stagnation

region in hypersonic flow.

P = L e T
——— /Ts = 4000°K

—— Cs = @‘1—)8

Lo oae o

| o=

P

S T, so0ok T

Fig. 32a

Now, for la =1, /A—%—g_= const., and for the equilibrium case we may
express a measure of heat transfer as QA& &S5 (this unit will remain
an undefined '"Nusselt number", serving only as a comparison for var-

ious cases of heat conduction). From Fig. 32a, we note that the temper-

ature gradient is smallest between the plates because a greater
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proportion of the heat flux is due to diffusion of atoms in that region, while
at the extreme surface temperatures heat is transferred chiefly by
conduction.

Let us now examine the 'frozen' case, where in this context, frozen
means that the atom concentration is not changed by chemical reaction.
That is, W=0O, and for this frozen case,\_;olug-cé = const. This relation re-
quires that the flux of atoms be constant at every layer. We consider
that equilibrium exists at the upper plate, but not necessarily at the lower

plate.

oo Cagds

/—-—'Fv‘o ren, ﬁ‘tu Co:f’.

N -Frozer\.) nzm—ca.:f‘,

mn

777 o 7 7 77

Fig. 32b

Any of the straight lines in the above Fig, 32b satisfy the condition

g%& = const. (Assume l.a_//‘— = const., for convenience.) Suppose the

lower surface is cold, so that (Ce%_\w-:OS then if the wall is completely

noncatalytic, i.e., =0 , then ec must vanish, according to Eq. (46).

°%

If, on the other hand, the wall is fully catalytic, i.e., M = 0o » then

) 2
(_‘—(,_7 -0 for finite 'g‘c.;‘L . In the frozen, noncatalytic case, the heat
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transfer (purely by conduction) is expected to be small, and using the unit
introduced earlier, we find Q X ¢3%. However, if the chemistry is
frozen and the wall fully catalytic, there is a chemical reaction at the sur-
face, that is, the energy of dissociation is deposited at the surface upon
recombination, but there is no chemical activity in the gas. In this case,
heat transfer is high and we get roughly Q < 0.60. Thus, a fully cata-

about
lytic wall will experiencejthe same heat transfer whether or not there is

gas-phase chemistry,
This kind of simple '"Couette' calculation provides a sort of quali-

tative model™ " for the more complete calculations of the hypersonic stag-

nation-point flow3l.

Couette Flow with Radiation

Here, we consider that layers of the gas may exchange heat by

radiation:

A JAH - .
—E.g:; 1—'5&— cenct,

Such a problem has been studied by Goulard and Goula.rd29 for Couette
flow, with a very large temperature difference between the two plates.
The gas is assumed to be quite transparent, 5<<°L<") so that we do not
have radiative equilibrium. However, we assume ""quasi-equilibrium"
and also assume a ''gray gas'. In this case the result from reference 29
is: 7:5 | o
o IH o [ BN 5 [ BRI = comah
P ’)73- ™ A
where QT = & J‘y_ and [3 :D-T4 ; that is, B is By integrated
over all 2/, The terms have the following meaning: QH/JT;;{. repre-
sents heat conduction downward {Fig. 33) from any point toward the low
temperature wall. The term p_LQ"B (2/)402}’ represents downward

A
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radiative transfer of heat for layers above T , and the last term is upward
radiation for the layers below T. The net effect of radiative transfer is
a smoothing out of the temperature profile. Temperature profiles and energy

flux are shown in Fig. 33.

| conpection
Dnly

/ Sop S / 3000‘7'( 7/ 6°OO°K

&89
Fig. 33

The presence of radiation revises the balance of heat flux. If the overall
heat flux level is, say, a value of 3 watts/cmé/sec., then at the upper

29

plate, analysis shows that 5 w/cmz/sec. are due to downward convec-
tion, diminished by 2 w/cm?/sec. due to upward radiation. Aty = 1/2
there is a heat flux of 3 w/cm%/sec. downward due to convection and the
upward radiation contribution tend to cancel. At the lower wall, there is
then only 1 w/cm?/sec. downward due to convection and 2 w/cmz/sec.
downward due to radiation. Chung36 has analyzed Couette flow with ioni-

zation, including effects of the plasma sheath,

Viscous Waves

A somewhat different kind of problem which provides a '"model" for
boundary layer flow is that of a single plate in a semi-infinite expanse of

gas, the plate being suddenly moved or heated30. Here, we consider an
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unsteady problem in independent variables % and Z  to correspond to
a two-dimensional steady problem. Since the plane surface is doubly in-
finite, all D/aT = O , and the problem is linear! We may put all

P/DE = du/at.

If a step change of temperature or velocity occurs at the plate, a
viscous, dissipative, conductive, or diffusive wave spreads into the gas
above. In the absence of chemistry, the heat flux to the plate goes inversely
with the wave thickness: Q < l/r{; . Thus, we will speak of heat transfer
in terms of a Nusselt number Q \/TE which would ordinarily be constant,

First suppose temperature of the plate drops slightly, the gas above
being dissociated. At first, there hasn't been time enough for any change in
¢ (whatever the value of T ) and the Ny is small, compared with the
value later on, when c also falls and the chemical energy is given up to
the surface, or near the surface in the gas. Ultimately, equilibrium must
be achieved, for any [ , though the value of [T affects the speed of

equilibration.

NuQlt

- 71 .



Fig. 34 shows how N is affected by catalycity, as well as by £

which compares change in temperature with change in (equilibrium) concen-

tration
€ Cp AT
| +e Cp AT +8AC
9.%,.
at constant pressure. & can be quite small for air] in effect, because

\e\(o) is large, Especially at low density is this true. The mathematical
assumption of small & greatly simplifies the analysis of this problem30,
providing a model which might usefully be extended to other problems.

Fig. 34 is remarkably close qualitatively, to the more exact results
for stagnation-point flow due to Fay and Ridde1131, and thus, this '""Rayleigh
Problem!' provides a useful model for certain hypersonic boundary layers.
Such a model for the flat plate boundary layer is provided by assuming that
the plate temperature is low, but it is suddenly moved at high speed. Con-
sequent dissipation produces heat flux. In this case, the early and late
situations are the same -- no chemistry. At intermediate times, however,
atoms are produced in the gas, but may not have had time to recombine at
the surface. Thus, at the surface, one has the concentration-history shown
in Fig. 35. A corresponding dip in an otherwise constant N may be
expected at these intermediate times. Here again, small & simplifies

the analysis.
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Fig. 35

The Leading Edge Problem

The corresponding problem of the hypersonic boundary layer with
chemistry at the leading edge of a flat plate has been studied by Rae33.

In this case, one is concerned only with dissociation, since recombination

is of no consequence in the region near the leading edge, i.e., ¢ << T. .

As a result, binary scaling is applicable. Rae finds that the temperature
exhibits a sharp maximum within the boundary layer, owing to the effect

of dissipation. He was able to achieve a simple solution by an approxi-
mation of a thin reaction zone at this maximum temperature layer, on
either side of which concentration was assumed to change only by diffusion.

The Stagnation Point

As we have mentioned) the stagnation point is the only case for which
the nonlinear viscous flow with nonequilibrium chemistry has been solved.
In effect, one finds the leading term of a Taylor series in distance away

. 3 .
from the stagnation point. The heat transfer results ! are illustrated
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quite well by Fig. 34, except that, instead of real time + , one uses the
characteristic time L/u“ in forming the abscissa. Thus, a small nose
radius would favor 'frozen heat blockage', for a noncatalytic surface, for
example,

Stagnation Point Heat Transfer at Altitude

Chung:“'2 has analyzed this problem. For stagnation flows as altitude
increases, T increases, and this has the same effect as a decrease in L.
Thus the flow teﬁds to freeze, even though the boundary layer thickens. At
high altitudes, the shock layer, 8 s nearly all viscous (refer to Fig. 17);
that is, the boundary layer thickness approaches S, The heat transfer
rate calculated by Chung varies with altitude as shown in Fig. 36, for a

noncatalytic wall.

‘ 1
| 20 Wt 210 kit 300 kft

32
Fig. 36
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In region A, heat transfer decreases with increasing altitude due to
slow recombination in the frozen boundary layer, The energy is essentially
trapped in the form of dissociation energy, and the boundary layer, being
almost completely frozen, has reduced heat transfer to the wall. However,
as altitude increases still further, the degree of dissociation behind the
shock decreases, and less and less energy is taken up in dissociation. Thus,
at about 210 kilo feet these two effects are nearly equal and heat transfer
reaches a minimum. Further increase in altitude, i.e., region B on
Fig. 37, results in failure to reach dissociation equilibrium behind the
shock, and finally, at about 300 kilo feet, there is little or no energy going
into dissociation at all. Here we approach the condition of an ideal gas,

with no chemistry involved in the heat transfer process.

REVIEW OF MODELS DISCUSSED

In these notes, a wide variety of assumptions and physical and mathe-
matical models, useful in the analysis of hypersonic flows of a real dis-
sociating gas, are discussed. Inconclusion, these may be listed as

follows:

1. Lumped constituents (p. 3): grouping together of nonreacting

constituents,

2. Lighthill Ideal Gas (p. /0): vibration 50% excited and

a constant; useful as a standard real gas.

3. Nearly-Equal Speeds of Sound : small dispersion of sound

waves in either chemical (p. | b) or radiative (/9 ) cases. Leads to

Telegraph Equation.
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10.

11,

12.

13.

14.

15.

16.

17.

Quasi-Equilibrium Radiation {p.20): even if quite transparent,

absorptivity and emissivity at black-body values.
Gray Gas (p.21): Emissivity independent of wave length.

Constant pressure, enthalpy behind normal shock (p.3]):

For very strong plane shock, and ¥ nearly l.

Newtonian Flow (p.39): Enthalpy and velocity nearly constant,

for strong (curved) shocks and 14 nearly 1.

Binary Scaling (p.3l,): when low-density flow is initially under-
41
dissociated.

Coupling of Vibration and Dissociation (p. 3§): behind very strong

shocks.

Sudden Freezing (p.50): during expansion of initially fully-

dissociated gas.

Constant "Entropy" (p.55): for channel flows with sudden freezing --

Moliere diagram.

- Channel Flow in Stream Tubes (p.58): for analysis of nonequili-

brium afterbody flows.

Viscosity Evaluated in Hottest Part of Flow (p. 63): generally

a good rule. Viscosity weakly dependent on € .

Constant Pr, Le , pmt (p. ¢/, &3 ); Usually done but not

- fully justified.

Q o< AH (p. 62): Ideal gas result applies to this extent,
if |e=1.

Couette Flow (p.éf): a model for hypersonic boundary layers.

Viscous Waves (Rayleigh Flow) (p./0): a model for hypersonic

boundary layers, especially stagnation point flow,
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18. Thin Reaction Layer (p.7%): for leading-edge problem.

19. Equilibrium Change of Internal Energy Much Smaller Than

Chemical (p.72): Small é; Simplifies Rayleigh problem.

N

54
- 77 -



10.

11.

12, .

13.
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Stability Behavior 1

I.  Introduction.

a. The study of conservative systems hos a long history, its aim being
mainly the description of planetary orbits. In fact, for a long time this subject
was one of the primary fields for applications of the calculus and to a tremendous
extent stimulated the development of analysis  Follawing the work of
Poincaré and Birkhoff the subject of conservative systems reached an apparent
climax which seemed to have brought the development to a stop. Many of the
important questions were solved or were shown to be absurd or inappropriate
questions. As an illustration of the latter point. recall that for many years
mathematicians sought explicit solutions of the equations of motion; first by
explicit formulae; then by quadratures, which means that the solution is repre-
sented in the form of explicit integrals When it was recognized that this ques-
tion is closely related to the construction of integrals, one then tried to establish
integrals of the motion -- say for the three body problem. It soon became
suspected that there may not exist any integrals for the three body motion other
than the known energy and momentum integrals. Bruns, by means of a very
ingenious argument, showed the nonexistence of algebraic integrals for the planar
3 -body problem, except those which are algebraic functions of the known ones.
Later, Poincaré presented an argument which showed that in general a Hamilton
system need not have more integrals than the Hamiltonian and functions of it.
Even though his argument has been criticized as being incomplete. it does clearly

contain the germ of the proof. Further details on this subject are discussed later.

Thus questions related to the search for integrals of the system and the
solution by quadratures seemed to have ended with Bruns and Poincaré. This is

both a true and a false description of current work. To show that the quest has

not really ended, we have to ask what is the principal aim in the study of conserva
tive systems. First of all, it is the description of the solution for long time
intervals. The differential equation relates the function and its derivative at a
point. One should deduce from this knowledge the behavior of the solutions for
long times. For example, can one exhibit solutions of the 3 -body problem which
never lead to collisions? The question of collisions is intimately related to the
stability problem in the 3 -body problem. The stability problem has also been at

the root of the attempts to discover explicit solutions, since these solutions can be

t
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Stability Behavior 2
11_time

descrig%laﬁ‘llgrggr?eral. the task of describing the behavior of all solutions of a

conservative system for all time is a very difficult one because the motion can be

ergodic and, therefore, would be much too complicated for an analytical descrip-

tion.

I shall not attempt to give a historical background of the related developments
in celestial mechanics. For this purpose, I refer to the very interesting paper of
Hagihari *. Hagihari also discusses the point that the problem of describing the

motion for all time is an outstanding open problem.

Recently the theory of Hamiltonian systems has received a strong impetus
from the investigation of artificial satellite orbits, but an even stronger impetus
from the study of charged particles in a magnetic field, e. g. in accelerators,
where the particles go around more than 300,000 times in 8 vacuum chamber and
have to be retained in a remarkably narrow chamber by appropriate magnetic
fields. These time intervals are relatively much longer than those that one is
accustomed to dealing with in astronomy, where one revolution has to be taken as
a year for the earth, or a month for the moon. The motion in particle acceler -
ators  thus poses the challenging problem of developing a theory for predicting

the orbits for such long time intervals.

For the description of satellite orbits the main questions are those of

numerical methods; however. the nature of the orbits is still of interest.

b. Within the last ten years, this outstanding old problem has received an
immense advance. At the International Congress in Amsterdam { 1954), A N,
Kolmogorov announced an outstanding result concerning the existence
of almost periodic solutions of Hamiltonian systems. The statement of Kolmo-
gorov’s results, its application to celestial mechanics and an indica,tion of its proof

will be the topics discussed in these lectures.

Since the announcement of Kolmogorov, one of his students, V. Arnold, has
worked on the ideas presented by Kolmogorov and has applied these concepts to the
n-body problem. Arnold discussed some of his results at the last International

Congress {1962) He also presented the details for some theorems related to

*

i Hagihari, Notes of the Summer Institute in Dynamical Astrouomy, Yale
University ( July 1960).
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Stability Behavior 3

that of Kolmogorov and he recently, ina private communication, disclosed that
he has written a long paper concerning Kolmogorov's theorem. The publication

of this paper will appear in a co.am . icorativ. volums tonering Kolimogorov.

During the years 1958-1961, I also made an effort to give a full proof of
the statements of Kolmogorov. These results were published in the G6tt. Nach-
ricliten (1962).

c. To put these results into perspective and to prepare the path properly,
the lectures will be organized into the following parts:
I. Introduction
II. Discussion of existence and nonexistence of integrals

III. Statement and discussion of Kolmogorov's theorem and
the annulus theorem

IV. Application to the motion of a satellite about an oblate
earth -- results of Kyner and Conley

V. Proof of a theorem by C. L. Siegel

IO. Existence and Nonexistence of Integrals.

1. Conservative System, transformation theory --

Consider the system of equations of the Hamilton canonical form:

p =-Hq (p,q,t); § = +Hp (p,q,t)
(1) p=(pys - .. ,p)
q= (q17 . o ° ’qn)a

and t is the independent variable. It is known that the canonical system of

equations is related to the variational problem

A, .
6] L(qg,q,t)dt =0, L= _""p g -H(p,q,t)
v=1
An alternative representation of Hamiltonian systems was given by Cartan (see

Logon sur les Invariants Integraux, A. II.i »ann et Fils, Paris 1922). Any system

555



Stability Behavior 4

v =1f,(p q)
q)‘u = qy(p*q)

is Hamiltonian if there exists a function H such that the differential form

i,
& dpyday - dHdL

is preserved, i.e., if
d , o
a{(;zi dp. dq,, - dHdt) = 0

Consider the following general transformation of the generalized coordinates:

P, = @y fu,v)

q, = ¥, flu,v).

In general. such a transformation does not preserve the Hamilton canonical form.
A canonical transformation {i.e., one which preserves the Hamilton canonical form
1)) of the variables is required to preserve the differential form
n n
_//2; ) dp, dq,, = 2 _.1 du,, dv,,

=

This condition is equivalent to

- a(fzz_/ o ¢/],/! a! @1:2 23!
E'(; 6(ukyv{) dukdvé+l§_€ a(,uk,uf) dukdu

4 olg ¥ ) _
t kze 3 (Vk’ v, ) dvde{ = 1{2 dukdvk.,

If the transformation is canonical, the new Hamiltonian is obtained by substituting

14

the new variables into the original Hamilton function. That is,

H=H[H(u,v), Y(u,v)] = K(u,v).

A system is said to possess an integral, G (p.q) , in some domain D, if
(i) the gradient (pr, qu) # 0 in D,
(ii) G(p,q) isa constant along each orbit in the domain D (in

phase space); i.e.,

n

d _ _
at G (pra) = UZ_I (GpyHq, - CGgyHpy) = 0.




Stability Behavior 5

It is clear that if H is independent of dq> then G = p 1 is an integral. Such
a situation arises frequently if the system is independent of some variables. The

existence of these ignorable variables can be used to reduce the order of the system.

ocall
More generally, it can be shown that if H has an integral G1 » t%gn in appro-
priate coordinates u, v the Hamilton H = H (u, v) is independent of u ., and

1
G=v 1 is an integral. This statement is proved by showing that
vy = G(p,q)

can be extended to a canonical transformation. The preceding is a special case of

a more general theorem. Let Gl’GZ’ C e ’Gn be n functions such that
n
y:l(Gf‘pVGf*'qv G/-tqu,u'p») =0 m,u'=1, ... ,n
and { Gu ,

e aq,,) is of rank n ;

then there exists a canonical transformation such that

V/.L= /u(p,Q), u/A_:F/,L(p,q)o

The preceding is a local statement.
In this case, one would have

H = H(Vl,vz, e e e n)

and u, = Hy

» , Vy = 0.

v

The solution to the system, therefore, is given by

u, = HV_D[V (0)]t+uv(0)

v, = VD(O) .

In the following, systems of the preceding type will be called integrable.

2. We shall illustrate by an example the manner in which rotational symmetry
leads to the existence of integrals. This example will again be discussed later on.
The example is that of Stérmer's problem which deals with the motion of a charged

particle in a dipole field which is an idealized model of the earth's magnetic field.

The motion of a charged particle in a magnetic field B is governed by the
equation

mv = e[BXV],
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where m, e, v are respectively the mass, charge, and velocity of the charged
particle. The dipole field is given by

- .o 1
B—cazgradr,

2

r =x2+y2+z20

By an appropriate stretching of the variables we can effect the normalization
Le=1.
m

Therefore, the system equations can be written as

v=[Bxv]

- 9o 1
B—az gradr"

In order to write these equations in the Hamilton canonical form, we introduce the

vector potential A having the components

. - X
A \}Yg - 73 - 0)
so that
curl A = B .

We introduce the Hamiltonian

1 2 , 2 2
= = { - i - -

H=glip) AT iy -A) "+ (pg-Aag)7 ]
where q=I(x,y,2z).
Then, if one eliminates p 1'Pg-Pg from the set of equations

qy = Hp,, = py - Ay

by = -Hq_, = E(p’“ CAA LT T A
one finds

Gy, = 2. q (A -A )

dy Z.q/(,ux /u“qb | Ao
or = [curlAxg] = [Bxq].

By inspection, it is apparent that these differential equations are invariant with
respect to rotations about the z axis. Therefore, it is appropriate to introduce
the cylindrical coordinates 6, w, z by the relations

X = W cos 6

y

Z = 7.

]

w sin 6
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Exfend this introduction of new coordinates to a canonical transformation by

introducing the new momenta

pe = 'p1y+pzx 1
Py = PXx*pyy)y,
P, = PpPg-

Using the new variables yields the new Hamiltonian:
This relation demonstrates that 6 is an ignorable variable. a result that has
already been anticipated. Hence. we have the integral of the motion:
G = Py = wzé - %g—
Notice that G is not the angular momentum, which is w26 .

This result is well known and serves to illustrate the usual
construction of an integral by taking advantage of symmetry. The integral, G,
serves to reduce the system to two degrees of freedom. Since Pg = constant,
and 8 does not appear in the Hamiltonian, one has a system for w, z which

takes the form

--= _V 3 =
(2 v W VT Py
z2=-V, Py = ~Hyo
where

Thus. in the meridian plane, the motion appears like that produced under the

influence of a potential force given by ( Vw . VZ) .

The integration, or study, of these equations is called "StSrmer’s" problem
because Stormer made extensive numerical studies of the solutions which were
later continued by Lemaitre, de Vogelaire, and others. It is generally understood

trat the system (2) is not integrable, although this fact has not been proven.

3. To demonstrate the difficulty lying in the concept of integrability, we
want to show that this system, (2). indeed possesses 3 independent analytical
integrals in some part of phase space; although in the remainder of the phase

space, these integrals need not exist. Yet. apaiytic

%59
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continuation of the integrals cannot be used to construct the integrals over the

total phase space.

To show this, we consider the differential equations (2) in the z, w
plane which have the integral

2

H=§1(z +w2) + V.

This represents 1/2 of the sum of the squares of the velocities; i.e., -;— (q) 2.
T'or each trajectory, except the rest states, we can replace the time variable by
ct so as to obtain the normalization

1 .
H=g5, or ld] = 1.

Hence, we can study the orbits satisfying the relation
2 2

27 +WT +2V = 1,
or

G W

= + £

w T3 1

The inequality restricts the w, z plane to a certain admitted region which
has different shapes for different values of
G(z,w) = g.

Typical regions are sketched in the figure.

(<)
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-2 < g<o : .
/
.‘J/
T /
4 T~
(p) P
2
N
\. T —
: o

i |

g < -2 !

;

(5) :

{
[ / . in outside region
NG

~ . mlnwz%(ig‘+\lg2+4)
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4. Now it is easy to see that if g > 0 then for all solutions one has
r —>o as t —>ow0.

The same situation holds if g < -2 and one is in the outside region. This
follows from a simple estimate for R = |q] 2 . From the differential equation

one finds that

R .12 v .
;57 - la®+@d) = 1+ (a0, [Bxal).
But, since 5 _ 35 k
4 -33 >
we have 2
1 dR 1 .
2 az = 1-73(a, [kxq])
p— l/ 2
= 1 + I'3 D (3]
= 1 + 1 ( +--’_2)
- FS- g r3
1 &°R
For g >0 one observes that 3 a2 = 1 thus R(t) is a convex function and

R —eo0as t > o .
A similar estimate holds in the outside region of case & since there

min w =%[|gf+(g2—4)l/2] > &+ 1, with 6O>0.

Therefore ldzR:1+w(_g+W)él_w
2 dt2 r3'w 13 r3

w N 1 1
1—(w2+22)d/2"1"W>1—(1+6)2 —6‘>0'
We are then led to the same conclusion:
R—>ww as t = fw.

Therefore, we have shown that |q] > §"t for large t. From the

differential equation, one concludes that
qg—> O(t—lg) as t — + o, and, moreover,
. 1
q9—=>a+0(m),

where a is a vector satisfying |a] = 1, since |a] = 1. Finally, one observes
that
qg(t) —at-b —> 0,
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with a constant vector b.

Conversely, one can find a solution for every given a, b in the form

q(t) = at+b+ect t+

b

as a convergent power series expansion, if t is large enough. The proof of

these statements is quite straightforward .

Thus, an orbit q (t) can be specified by the vectors a,b. In order to
take into account the fact that q (t) and q (t+71) correspond to the same orbit,
i,e., a,b and (a,b+ Tta) should be identical; we normalize a » b by the
orthogonality relation

(a,b) = 0.
Moreover, normalization of the Hamiltonianto H = 1 /2 yielded

la| = 1,
and finally, G = g corresponded to

(a,b,k) = g.
The components of the vectors a, b satisfying the above conditions represent
integrals in the part of phase space specifiedby g > 0, H = 1/2, or, the
outside region incase ®, and H = 1/2. That is, for every point P in this
portion of the phase space, follow the orbit through P as t —» + o to oo and
associate a (P), b (P) with it. The six components are analytic functions and well
defined in this region. The preceding three restrictions ,altogether provide 3
integrals independent of G and H . Thus, we have the 5 independent integrals

which we wanted to show.

5. Nonexistence of integrals

In connection with the nonexistence on integrals, we have to discuss the
negative results which state that in general Hamiltonian systems do not possess any
integrals independent of H . The best known result in this connection in due to
Poincaré. Poincaré's theorem has been criticized because it is not rigorous. A

different and rigorous statement has been given by Siegel which states that near an

equilibrium integrable systems are rare in the sense of Baire category. We also refer

to the papers of Fermi and Moser. We shall not go into details on this subject since
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Dr. Contopoulos will discuss the subject at length.

However, for our purposes we wish to emphasize that the concept of integra-
bility (or separability of the Hamilton - Jacobi equation) is not a '"physical concept''.
This is meant in the following sense. If the Hamiltonian is changed arbitrarily
little, the integrability of the system can be destroyed; i.e., one cannot distinguish
between integrable and nonintegrable systems if the Hamiltonian is known with only
a certain degree of accuracy. However, in the following section we shall show that
the existence of a set of invariant surfaces can be guaranteed even after small

perturbations of the Hamiltonian.

III. Theorem of Kolmogorov

a. Normal Systems:
Kolmogorov considered systems near an integrable system. Specifically he

studied ''normal systems' which are defined as systems with a Hamiltonian of the

form

0 1 2 2
(1) H(p.q,u) = H (p)+/uH()(p,q)+/u H()(psq)+»”,
where H is analytic inall 2n+ 1 arguments, the d,, (=1, . . . ,n) are

angular variables and x« is a small parameter. For M = 0, these systems are
integrable, and obviously p, = constant, (» = 1, . . . ,n) constitute n
independent integrals of the unperturbed normal system. One then hopes to find n
independent integrals for small M However, this hope cannot be realized for
arbitrary perturbations. The fact that the integrals may not exist follows from
Poincaré's statement (Meth. Nouv. I, chapt. 5) on the nonexistence of integrals.
Actually one would like to know the behavior of solutions to (1) in the large for
arbitrary perturbations. Kolmogorov's theorem does just this, at least for the

majority of the solutions.

Before stating the theorem, we will discuss and interpret the solution for the

unperturbed system. For M = 0, we have
. _ ;0 e - _pO _
(2) dp = Hp (p) 3 Pp= -Hg (p) = 0.

From (2), we immediately have the explicit solution

0
(3) 4y = Hp (p)t +.a,(0) 5 pp = py(0).

Since the q » Wwere defined to be angular variables, we see that py = constant

564
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represent n-dimensional tori in the 2n- dimensional phase space. The solutions
(3) remain on these tori in phase space for all time; we express this fact by saying

that these tori are invariant under the flow. Writing

0
wv = pr (p) ]

One sees from (3) that these w, represent frequencies of n oscillators.

As an illustration, consider the case » = 2 and refer to figure 1. Since

4, {mod 27) , we may identify points on opposite sides of the square with each

a9

2
4
6

8 1 3 5 a,
Figure 1.

other. This identification, i.e., (0,q) with (2f,q) and {q, 0) with
{q,21T) for 0 £ q £ 2147 gives rise to a two- dimensional torus. The solutions
on the torus, or the flow, are straight lines with slope wz / (,Jl . One can see
that for rational values of wz / €y the solutions are almost periodic. Further-

more, if wz /c.)1 is irrational, one solution completely covers the torus and we

have the ergodic case.

It will be the basic assumption of the following that the frequencies

actually depend upon the "amplitude" p, which can be expressed by

2.0
(4) det(%“’”)=det(%§4~°—l)¢m
P py /U

We shall call such systems 'mon-degenerate'. The contents of Kolmogorov's
theorem is that under small perturbations most of the n- dimensional tori can be

continued to nearby invariant tori. More precisely, we have:

b. Theorem !Kolmogorov): Let (1) represent an analytic non - degenerate

normal Hamiltonian system Then for sufficiently small AL there exist invariant

Vi 565
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tori

pZ/ = fv(¢1, o o e 3¢n) s qV= ¢U+ gv(¢1s ¢ e 5‘¢n) ’
and the solutions on each torus are given by

95;} = Wy
or By = Wyt +@,(0) .
Furthermore, for every set of rationally independent wl, SN satisfying

the inequalities

n
Z" m,, &y 2 n < k
v=1 (2 [m,])
v=1
for any set of integers (ml, .. ,mn) # 0 and k > 0, we have the

existence of such an invariant torus

Thus, tori on which the flow is ergodic can be "continued" under arbitrary

perturbations. On the other hand, tori for which the w,, are rationally dependent

will in general disintegrate.

c. Twodegrees of freedom; reduction to a mapping

We will now discuss a more geometrical formulation of Kolmogorov's theorem.

In fact, the following formulation is stronger in the sense that only finitely many
derivatives of the variable are required. whereas Kolmogorov's theorem requires
infinitely many; i.e., analyticity. In doing this, we shall restrict ourselves to
2 dimensions so that the results can be easily described geometrically. The

generalization to higher dimensions does not introduce any new difficulties. Set
_ 0
H(plvpzsql:qz) - H (plspz) +/‘,LP(p1,p23qqu2,/Lt)

Since H does not explicitly depend upon time, we know that the Hamiltonian is
an integral and we write H = h . Assuming that
0

?2#0,

we may solve H = h for p, asa function of p 109199 - Hamilton's
equation of motion after the elimination of t yields (with p 1=% 4= 8)

dr _ r _ _ Hgqq
(5) dq g a4y Hp,
| é® _ 6 = Hpj

dg,  q, Hp,
A :._.;-, .

G EmE W N O - G B TR M Th a i I an ar S am
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We have the following picture in the 3- dimensional phase space with coordinates
{r,e, qz) . Figure 2.

q2=0 q2=2‘ﬂ'

Figure 2.

The study of solutions to (5) may be reduced to the study of mapping M of the
plane dy = 0 onto the plane qy = 21T, the mapping being generated by (5). In
fact, choose 90 Ty arbitrarily in the plane qdy = 0 ; solve (5) for these
initial values to obtain

6 = 8(qg,;8,,1,)
(6) 2 0 0

r = r(qz§90’ro)°
The mapping M is given by

61 = 9(2ﬁ;90,r0) and r, = r( .'IT;BO,I'O),,

For 4= 0, we can write this mapping, which we call M0 , explicitly. Solving

(5) in this case we obtain
: - “
195590 79) = 09t 5 9y

- uO - - i =
where v, = HPi [P1P2(p1,q1,q2)] = Ki(pi) = Ki(r), i=1,2.
Therefore, w1 ) Ki(r) ,

Wy Kz(r)
and we define “1 _ «(r)
W, 27
&
Calculating 61 and r,, we find
0. =0 +x(r)
1
MO:
r,=r,

<
=7}
~
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where we have dropped the "0'" subscripts from 6 and r . We shall refer to

M o 25 the "twist'" mapping. Thus we may write the mapping M in the form

91 9+a(r) +F(r,8);:0<a<r<hb
M: r+G(r.9e),

Ty

where we do not explicitly exhibit the Y dependence of F and G.

As a consequence of the Hamiltonian, we find that M is area preserving.

This follows from the well known fact that the differential form
Z
v§1 dpydqy - dHdt = drde +dp,dq, - dHdt
is preserved for the Hamiltonian systems. Since H = h and dq2 =0, we find
that the "area' element drd® is preserved for the mapping M ; this means that

M is area preserving.

Let us now examine what happens to integrals and periodic solutions under the

mapping M . Any integral is of the form:

G(p,.P,-9;5-9,) = I'(8, 1) = constant .
and under the mapping goes into itself. Therefore,

I'(g,r) = constant = 1"(91, rl)
and thus the curve T"'{8, r) = constant is invariant under M.

A periodic solution with period 2mq satisfies (see (6))

Il

0

o = 8(27q; 6

O’rO) - eq

ry = r (27Tq ; eo,ro) = rq,
Hence, MAF = F , where F is the point (eo,ro) and F is a fixed point
of the mapping M2,

The question we now pose is whether of not the mapping M has closed
invariant curves near the circles r = r 0 which are invariant curves of the twist
mapping. The following theorem states the conditions for which the mapping M
possesses such closed invariant curves. For the formulation of the theorem we

introduce the following notation.

If h(r.96) is a function with continuous derivatives up to order s, we

568
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denote the st.h derivative norm by ’
i)
(38)

where r, 8 ranges over the domain in which h is defined.

G2

IN

| = sup| ()71 h(r,8)| ; o, +o

d. Theorem (Moser): Foragiven € >0 anda given s = 1 the

mapping M has a closed invariant curve

e

r

6" +p(e’)

(

where the functions p, q are functions of period 2 with s continuous
derivatives satisfying |p|s + [qls < ¢ under the following hypothesis:

Assume for the mapping M that every closed curve r = f (6) = f(o+21)
near a circle and its image curve intersect. Assume further that b-a > 1 and

, —14 d (r) ya
£8) Co =& < Sy

for some constant C0 > 1. Finally, we will construct a positive number
60 = 80 (€, s, CO) and an integer 7 = ¢ (s) with which we require that F

and G have continuous derivatives up to order ¢ and satisfy the inequalities
(9) |F|0+ |G|0<60

(97) |°<|{+ |F|{+|G|e< C,

Moreover, we assert that the mapping induced on the curve (7 ) is given by
(10) 9'1 = 9"+°§(r0).,

We remark that there exist many invariant curves which can be labelled by their
rotation number ( rO) = @ in (10). Infact, givenany «w in

(11) x(a) + € K w<x(b) - €

for which w /2T cannot be closely approximated by rationals:

(12) Inw—mZ’ITI é€n_3/2

for all integers n, m with n > 0, there exists a curve (7) with this rotation

number, = cx(ro)°

A difficulty in the proof of this theorem has its analytical manifestation in the

so - called small divisors. If we now draw our attention to a circle for which

963
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o{r) = 2MTp/q, we observe that the entire circle consists of fixed points Mg

The quest for a continuation of such a circle would suggest the search for a curve
of fixed points of M4, However, it is well known that in general only a finite
number of fixed points of M2 will exist (in general, 2q). This phenomenon
corresponds to the phenomenon of phase - locking in ordinary differential equations.
One can say that in general the curves with rational «/2T cannot be continued;

they break up into finitely many points.

e. An extension to the Theorem (Moser) :

In part IV of these lecture notes we shall wish to apply the mapping theorem
to the oblate earth problem. It will be found that for this problem, the twist «(r)
is small, i. e., depends linearly on the parameter 4 and so we shall need a result

that takes into account small twists. We describe such a result now.

For this purpose we introduce a parameter moin 0 <_u £ 1 and write the
mapping M in the form

91 = 9'*'/,(.(0((1') +F(r,0)) +/§

(13) r+ pG(r, 6)

il

R ]

where r rangesover a £ r <€ b, b-a>1 and /g = constant.

Theorem (Small Twist) : Under the assumptions (8), (9). (9') the

statements of Theorem (Moser) remain valid if one replaces (10) by
9'1 = 61 +/uec(r) .

The number 50 = 50 (s,€,C 0) can be chosen independently of P Note
that in this form the unperturbed mapping of (13) is

91 6 + ux(r) + pe

r,=r
where the variable angle of rotation x(r) ranges over an interval
(/u«x(a) ,/wx(b) ) which will be small for small values of 4t . In this case it is
not clear whether there is a number « satisfying (12) in such a small interval.

Therefore we modify (11) and (12) to

(14) d(a)+e<%é-<°<(b)-€
(15) |nw - 21Tm| E‘/uen_s/2
570
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Then the density of admitted <« in (14) will be close to 1 .

f. The condition: ' # 0

The assumption ' # 0, if interpreted for the original Hamiltonian system,

doesn’t quite agree with the assumption of non - degeneracy in Kolmogorov's

theorem. While it expresses the fact that all frequencies Wi oo e “wy actually
vary independently of the variables p 10 P, we require only that the ratios
cuy/ck)l , w= 2, ... ,n vary onthe (n - 1)-dimensional surface,
HO (p 1’ .. ,pn) = constant, For case of n = 2, this implies that
H 0 H 0 H 0
PPy PPy P
(16) i 1o 7 £ 0
PoPy Py Py Pa
i i 0
Py Py

We éhall demonstrate (16). Recall that

0
Hr (r,py (1) ,
= off 2
(r) =2 HY (r.py (x)

where p2(r) satisfies Ho(r,pz) = h and p; =r. o&'(pl) =0
implies that

0 0 0 0 0 0
(17 HY (H +H 'y -HY (H +H ty = 0.
) Py ( PPy plpzpz' Py Pyby Py Py P2

But from H°(p .p,) = h, it follows that

HO +H0 p'2 = 0.
Py Py

Thus (17) becomes

(18) B (g w% -8 w% ) -8% (w® H® % HO)=o.
P1 PgP; Po PoPy Py Py PyPy Py PyPy Py

The left hand side of (18) is merely the determinant in the inequality (16). Thus
x'(r) # 0 implies (16).

571
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IV. Oblate Earth Problem.

a. Introductory discussion:

The observation that the oblate earth problem can be approximated by an
integrable system was observed by several authors; see Sterne, Garfinkel and
Vinti.

As Professor Brouwer pointed out, this problem can be approximated by
the two center problem which is known to be integrable.

Therefore, Kolmogorov's theorem is applicable to this problem. In fact,
we shall show that in appropriate coordinates we can find a Hamiltonian H

for the oblate earth problem dependent upon a small parameter yz such that

572
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2
(1\ H(p’qw/}-)=H*(paq’/u—)+o(/&)

where H?* is integrable. Kolmogorov's statem%xslt?}nle})iiif%ﬁgnb%eAgﬁlglli%d to the
system (1) and conditions determined which insure that solutions to (1) can be
continued for arbitrary perturbations. The work discussed here is part of the
current research of T. Kyner and C. C. Conley and will appear in print elsewhere.

For the oblate earth problem we assume that the gravitational bulge of the
earth is rotationally symmetric about the z-axis and symmetric under the reflec-
tion z—> -z . The potential U (x,y, z) is harmonic outside the earth and dies
out at oo . The potential can be expanded in the following form as a series of

Legendre polynomials.

o c

- —n
U n§0 ~7n Pzn(cos 0)

cos 8 = z/p.

As a first approximation to the earth's potential one finds

¥M ro,2 o
= -7 [l—Jz(r) Pz(cose)+ ]
where P = 3cos29—1
2 2
rO = radius of the earth

M = mass of the earth
and measurements of the dimensionless quantity J 9 yield the approximate value

J, ™~ 1.082 X 1079,

i.e., J2 is rather small.

The problem is to discuss the solutions of the equation of motion

¥ = grad U .
Normalize the units of mass, length and time sothat M = 1, ry = 1, ¥=1.
J2 , which is of the order of 10 3 is considered as a small parameter. In

normalized form the potential is

, 1 J Z
(2) Us=-2+38P,(3).
r r 2'r
Although we have neglected the cffects of the higher spherical harmonics, the above

potential represents a better first order approximation for an oblate earth that the

simple central force potential.
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b. Integrable approximation.

If one admits a change of the potential U in (2) of the order O (Jz2 ),

we can replace the potential by
(3) 0 = -Re[x®+y%+ (2+1V3,)% )17 ¥/2.

The simplified oblate earth problem can be reduced to the problem of a masspoint
moving under the mutual attraction of two fixed
mass points. If a masspoint of mass m is

placed at {0,0.c) , the potential at point P

is (0,0,C)\///
(4) = <

o > P

i

m ( C Z
R %‘ “*r) Pn(r)

(07 09‘-0)|

1
In fact. this is the manner in which Legendre (1785) determined the polynomials

P «f%) 0

However. the preceding configuration
approximates the attraction to an "ovary" f }\ /—-'\
ellipsoid instead of the desired oblate
ellipsoid. This difficulty can be circum- \ K—‘/

vented by choosing c to be purely imaginary

and superimposing two such complex conjugate "ovary" "oblate

potentials as one finds in (3) and (4) with ¢ = ile/z . The result is

U = Re[x2+y2+(z+i\/J2)2]1/2

Il

LS cphlog b (g
r e r2n “2n “n'r

Since r is restricted to the exterior of the earth, r > 1, we have ( I Pnl < 1),

Jdo, 2
(=2 2
-0« r) 3
rl_irz 1-J2
574
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c. Integrability in elliptic coordinates.

We use the following fact ( see Wintner, Celestial Mechanics)

1t H(p,a) = (52 preylay) + Thyla,) ] [ Saylq)] L,

where a,, .b,, and c, are functions of the variable q, alone, then the system is
integrable. Thatis, for H = h, the motion is given by quadratures. To prove this

statement, transform t by
dt = c(p,q)dr

on H=nh
Then, p’ = cH,
q :-ch.,

Since on H = h . we have

[c(H-h)]q = ch,
we canuse c{H - h) as the new Hamiltonian, wherever this vanishes. With
c = Zay,} or |

dt = (Za,)dr,

we find the new Hamiltonian:

1 2 :

2 260y * Zhy(aqy) -h¥ay(q,) = TH, ,
where each Hj; depends on p,,q, only. The solution'is obtained from solving
n sets of simultaneous differential equations of order two,

p7j:HD
qy = H

q.
& P
separately, under the side condition ~"H_, = 0,

Consider the system, which has the Hamiltonian

(5) H= 3 |p|®+U(q),

where 1/2

"Ulq) = -Re[x’+y+ (z+1VT5)%]"

We have that the potential is only a function of x2 + yz and z . This implies that

Xy - Xy  is an integral. Introducing the cylindrical coordinates w = (x2 + y2) 1/2

Z and O, we find that the new variables are defined through the relations:

pdq = p dx+p dy+p dz

pwdw + Py de + pzdz
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X = W cos 6
y = w sin 6
Z = z
Thus pdx+p dy+p dz = (p_c+p_s)dw + w(-p_s+p c)de + p dz
X y z X y S ¢ y b7
c = cos 9
s = sin @ ;
or P, =P,; P, =P _cos8 ; pg = wW(-p s+p_ c)
z z’ Tw X ’ 92 X y
2 2 2 2 2  Pg 2
= = ——+
[PI” = b o, *p, = Pt ST tD,
Hence, H =

1,2, 2
5 (P, *p, )+ V
2

V=58 - U (2, W)

and the differential equations of the system are

w = -V
w
Z = -V
zZ
In the above,
Py = w(—pxsme +pycos 6) = p.y -pyx = Xy ~yX,
is the angular momentum.
We have. therefore, reduced the system to two degrees of freedom, using

P, = constant and ignoring the equation 6= f(z, r, Py) -

To fit this problem into the integrable form mentioned above. we use elliptic

coordinates; this was also done by Jacobi for the problem of two centers ( see
Charlier I, p. 53).

The potential had the form:

V= & i Relw’+ (z+1yT,)% 1 /2
After an appropriate stretching. one can reduce this to J2 = 1 by replacing w

with W\/J2 , % with z\/J2 . Then J2 —> 0 corresponds to studying the motion
with large distances |w|2 + |z|2 .

d. Elliptic Coordinates (see Magnus and Oberhettinger, p. 198)

Pub w2 (a+ )% = (5+iy) for 0% E< o

-lé)r(:l,

576
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or W2+Z2_1:€2_712
Z = £7g
2, . 2 2 2
(1+85) (1-9) = 1+ 8% = 4%~ (g9)
2 2 2 2
=w +z -2z = W

Thus,

1

z

57 -
[(1+582)(1-4% Y2,

i

w
1= const

IN

which are defined for 0 € § < @ ; -1 ¢y
These are well - defined
except for § = % = 0,

which corresponds to the

circle w =1, z = 0.

The surface of the earth can be thought of as an ellipsoid of rather large § 0°
£~ 5,

Note that for our case, U takes the simple form

and 1 1 1 1 1

wZ T 1vg) (170 - U Tvgz TT42) g2

Extending the transformation to a canonical one using

p5d€+ pyd% = p dw+p dz,

2 2 2. .2

we find from

that 1, 2. 2 1 2, 2 2y 2
T - 30y R = gy st s (el
and 1__ 1 2y p2 %) p2
ey (08 s =y 1+ v
2
where vV = Pg - 3
2(1_'_22)(1“_7?2) E,2+;ZZ
_ 1 [Bél 1 - )
T gZigZ it Tygz TS Ty o)

A 857 7’
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We can now write 9
1 1 2y.2 Pg 1
B=zzz g0+ 30p -5 (357) - €]
1 1, 2 2
+Ez+—7/'z [5(1-7% )p7+—29;(m)] ,

which makes the integrability evident (see IV ¢), with

[¢] = 1+%2 c = 1-?2
1 2
- gz a = 2
#1735, 2 =7,
P 1 _ _Pe _1
bl— 2(1+g2) § b, 2(1-7;2)
In particular, we have the integrals
1 2 2 2
H1=§(1+g)p£+bl(g)—h(g) :hl and
_ 1. 2, 2 2, oL
Hz—2(1-7)p-7+b2(-r()—h(7()—hz—h h1

In principle, the whole solution is contained in these formulae; however. the

formulae are unwieldy and rather useless for numerical calculation.

More important than the explicit formulae is the fact that the problem at hand

can be approximated to terms of order /(2 by an integrable one:

" 2
H(p,q,u) = H*(p,q, ) +O(u™) .

Since H* takes the linear terms of order At into account, one can hope that the
motion described by H* is not any more degenerate. This one could check by

computing the periods ( elliptic integrals) from the explicit formulae. This procedure

is still very involved.

Let us denote the two frequencies of H by w ey - Then for s =0,

1 9

wl / Wy = 0, or is integral. Note that f«)l , wz can be transformed into
i !
nlwl + nzwz v Mywg + Dow,y 8O that
W a+b -Ej—l
=1 __wz
) c+ dzl

is unimodular. Thus, wl / W could be rational and constant if it vanishes in some

coordinates.
Kyner computed, that in appropriate coordinates

Y1 _ T 2 . 2.
(6) o, /U;Zcos 10(1—5005 10)
}.(:ng and p = Xy - xy
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The expression (6) contains the information necessary to determine whether or not
solutions to (1) can be continued for arbitrary perturbations. In order to see this
we shall now pass to a discussion of (1) in phase space and set up an approximate

mapping.

e. Discussion of Phase Space.

We consider the solutions corresponding to negative values of h . These are
described by setting (5) equal to h :
(7) 2]gl®+U(r.2) =n<o,

where ¢ (x,y.2z). The momentum integral is

p = Xy-xy = (gxgq,k)

where k = (0.0,1). Clearly

(8) ol £ lallal = la]-x.

and equality holds only if q, ¢, k are mutually orthogonal. This means that equality
holds only if one is in an equatorial orbit which is also a circle, or at perihelion, or at
aphelion.

Eliminate |G| from (7) and (8) to obtain the inequality

2
1 - 2
2%2+U h <0

or
1p2 1 .
(9) 5%2-;+0(/<)_h<0,
We shall assume that
2
(10) o<-h<%.

For = 0, the locus can be found to be the space between two spheres, as one can

read from the following figure.

2
1 1
I
2
T r|=p ] r
i | | /
| | )
h \ L /
I
L v
_gz —————
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For small values of At . the inequality (9) also describes a similar shell region.
This leads to the observation that under the restriction (10), the solutions of the
differential equation never approach r = 0 or r = co, which are the only singu-
larities. Therefore, all solutions satisfying (9) initially can be continued for all
values of t, and remain in that region.

In the mer1d1a,n plane there is an apparent singularity at xz + y2 = 0, since

V==1UH+ pﬁ /2(x + y2) . However, this singularity disappears in the 3 -

dimensional description.

f. Surface of Section -~ Conley

Just using the fact that U depends on r and z alone, as well as the

symmetry. allows us to deduce some qualitative features. It follows from (5) that
U(r.z) = U(r,~-2z).
We already know that for z = 0

2
E%Z+U:h

has two roots: r = r. T, and that
o2
21‘2+U<h in r1<r<r2°

We wish to describe every orbit by its intersection with z = 0, the equatorial plane.

One variable would be 6 , which we can ignore. Therefore. we canset 6 = 0 , or
y=0:

p=Xy-xy = -xy, r=2x>0; 0<r1<x<r2.
Hence, H=z(x%+y%+2%) +u=n.

Using y = -p/x. we have

1 2 2 2
(11) 5 (% +2)=h—U(x90)—%zu
Thus, for every x in

r1<x<r2,

one has an associated equation which describes a circle, since the right hand side of
1<x<r
(11) is pos1t1veA a,nd zxero for r = r. Ty . This can be visualized as the surface of

a topological sphere symmetric with respect to z —> -z and having coordinates

x: %2+ 2% = R(x) .
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We now consider the flow

X = -V
X
Z=-V
z

in the 3 -dimensional part of the phase space (x,%x,z,z) where H=h. In this
3 - dimensional space we consider the two - dimensional surface @ of initial values.

Points with z = 0 correspond to equatorial orbits. In fact, the equator z = 0 is

invariant under the flow. We shall concentrate our attention on the upper half for which

z » 0. This part of the surface, o,
That is, every interior point is intersected by a solution ( since here 2z > 0) . The
boundary of 0, represents orbits in the equatorial plane.

Every point in 0., corresponds to an orbit with given h .p . Conversely,
every orbit with given h, p intersects 0., ; infact, infinitely often -- except for

the boundary. This follows from the fact that

(12) oU (w, z
St >0

holds in the shell r, £ r £ r, which is verified in our case for small S since

1
U _ 3 .2, .2 2.-1/2 1 -3/2 _
a—z—z-__-a—i-z-(x +ty +z7) —21‘ >0,f0r/(.(—0.,
Hence, %125 d >0 and
i _ _ ou__
z = —VZ~ ‘—Uz(w,z)— —26—(-;27 z

7 20z > 0.

Since 2 B(TZ_) < 2%, it follows from the oscillation theorem that z has at least

, and one of them has
zZ>0.
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roperl
Therefore, one cpanAlcaiesc%"ibe any orbit with given H = h and p = J— h,

by points on o, Wwith coordinates x, X .

g. Mapping.

The flow of the differential equation can be properly described by following
point p on o, along an orbit to the next point of intersection.

We now follow the work of Conley, who suggested that one identity o, and o
(the lower half of o) by (z, W) —> (-z,+W) .

According to our preceding arguments, every solution intersects o, and o0
infinitely often -- alternately. Following the solution for increasing t, we find a
sequence of image points

Py > Py TPy >,
and P, —> Py defines a mapping M of the disc o, onto itself, the boundaries
being invariant. T

\\ x pO /,’;
This fact immediately demonstrates the existence of a fixed point F of the

mapping M ; i.e.,
. MF = F

by Brouwer’s fixed point theorem. For small Mo this fixed point can be shown to
be in the interior of g, . The solution through F is periodic and symmetric with
respectto z —> -z . For st = 0, we have the circular solution.

The preceding arguments show the existence of periodic solutions., without a
definite restriction. For the case A = 0, this mapping can be verified as a rotation

about the angle 77 . the domain being a disc. On this disc the 2 -differential form
dx Adx + dz 4 dz - dH/\dt

is preserved under the mapping M. On z = 0, H = h, the differential form
reduces to dx A dx . which is the element of area on the surface o, . Therefore,
M preserves the area element, which is certainly the case for a rotation.
Kyner investigated this mapping and showed that in appropriate coordinates, the
mapping is a rotation about the angle
~ = T+ 3;1 3,0~ % cos” iy (1-5 cos® ig) s

where iO is the inclination angle.
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h. Conclusion.

We have seen that in appropriate coordinates , the mapping M has the form

0, = e+Tf+/2w(r)+0(/u2)
r, = r+O(/u) ,
in a disc where
2.
a(r)  cos 1(1_50 2.)
o - zper 0os 1
and _ 2
A= 3J2

Here the inclination i is relatedto r , the energy h , and the momentum p .
One sees that ™ is not a constant and so our theorem concerning annulus

mapping (with small twist) is applicable if «« is sufficiently small. We find a

set of invariant curves, which for small s cover all points of the disc with the

exception of a set of small measure.

This implies, for the solution of the differential equations
dy = _qu
U=-2(1-4p () + 2 F(z,r )]
r r2 2'r Lo

F(z, r,/,L) = F(—z,r,/u) ,
the existence of a set of almost periodic solutions. For any value h< 0
H=h
and )&y—x§7=p>\/~_211-,
these form the majority of the solutions.
To make this statement somewhat more precise, we recall that the system was

reduced to two degrees of freedom:

_ _9v
T ow
y _ _ 9V
Z =%
w = (x2+y2)1/2 ’

and the invariant curves correspond to almost periodic solutions
w =g [@d. (1), B (t

z

!
gQ
no
&
et
,: e
~—
S
no
=

where gy(¢l, 052) have period 21 in (Dl, (252 ,and
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B, = wy, V= 1,2,

Finally, the variable 8 can be recovered from
6 = Oy

yielding 6 600) + Wyt+g (B, 8,)

t

Combining this, we find that in the original coordinates
() = £,(0).@,.F,); »=1,2,3,
where f_ have the period 2T in @ys (A=0,1,2) and
¢A = OL)A o
The application of Birkhoff's fixed point theorem shows, moreover, the

existence of infinitely many periodic solutions of our system:.

V. Proof of a Theorem by C. L. Siegel.

a. Inapaper by C. L. Siegel, the problem of small divisors was overcome
for the first time for the following problem. Let

z. = F(z) = Az+f(z)
(1) 1
f(Z)=kézakZ ,

be a conformal mapping near the fixed point z = 0. According to a known result,

there is a substitution of variables

(2) z =5 +u(y)

such that in the new variables the mapping is linear and of the form
(3) D B

provided that |R| # 1,0 . However, Siegel's result refers to the case for which
2] = 1 . This situation can be considered as a model case of the small divisor
difficulty.

It was shown by Cremer that for unit roots A2 = 1, and even for numbers A
on |A] = 1, which can be well approximated by unit roots, such a substitution cannot
exist. In other words, it was shown that the formal expansioglfx%lust diverge for a

particular choice of f and |7\| = 1, when A is closely approximated by unit
roots.
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The contents of Siegel's theorem. however, is that for A on |7\| = 1, which
is badly approximated by unit roots; e.g. .

(4) |)v---1| = calpgz, for »=1,2,.... c. > 1,

there exists a substitution z = § +u (%) given by a convergent power series

expansion. In particular, this implies the stability of the mapping. The iterates

z, = Fi Zn-l)
are given by

z =3 +u(s),
where n

5, = A°S.

We wish to give a proof of this theorem using the ideas of Kolmogorov. Siegel's
proof is intricate and makes use of the fact that IA"’ - 1| is only rarely small, while
our proof will just use the estimate (4). Even though this proof may not be in the
literature, it is a direct application of the concepts used by Kolmogorov and Arnold;
the latter mentioned to the author, by informal communication, that he found a proof

of this type. We use this proof as an illustration of the principle.

b. One could proceed directly to construct the power series expansion of u
by comparison of coefficients which are obtained in a unique way and then proceed to
prove the convergence of the series thus obtained. However, the last step is just the
true difficulty. and we shall. instead, obtain u by a succession of substitutions
t coordinate transformations) each approximating the desired transformation to a
higher degree. In fact, the convergence will be faster than the usual convergence

and, therefore, the effect of the small denominators does no harm.
c. To turn the proof, we construct a coordinate transformation
(5) z = V(S) =5 +v(%),
which transforms the mapping into
(6) 5, =AY @ (%),
which is approximately linear. A simple calculation shows that
VIS =AVIS) = £S5+ v(S)] - (s).

To make ¢ small, solve the "linearized" equation (linearized with respect to
v.f. @). We set
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(7) vI1S) -AV(S) = £(5).
-The solution to (5) is readily given. If
f(z) = > szk ,
k=2

then. by comparing coefficients, one obtains

(8) vis) = = ;kik:; gk

k=2
This formula exhibits the small divisors, I)\k -7l
We shall now show that this choice of v leads toa ¢ which is smaller than f ;

thus we will have achieved a closer approximation to the linear mapping. This is shown

in the following lemma.

d. We shall assume that f is analytic in |z| <r, where r£€ 1. Moreover,

let ] < € in |z]<r

and let P be chosen so that
0L p<r= 1.
We set p=71r-4h >0 andprove:

Lemma -- If v is chosen according to (8) , and if the transformed mapping is given

by (6) , then there is a constant ¢ depending on ¢

|v'| <cﬁp—y;‘- in |S|<r-nh

0 only such that

2
—E = r-
|8l < ZC(r_P)g, in I‘§|<}0 r - 4h,
provided that
cE 1
(9) (r—,o)5 < 2
Proof: First we find an estimate for v’ and v. Using Cauchy's estimates for the
f, , we have
k < €
fkl K
Thus, (6] e —
vl ¢ 2= 3 k-2 Blyk-1
by S r
k=2
@
L Cqe 2 10k . %€ S (k+3)(k+2)(k+1) |5 k
TZ, et e e S ; )
3
1 6c < 6cy€r ce 4
e = < <z ; = 64" c,.
3], 4 1 -pd ¢
P -8l h (x-p) 0
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Similarly.

k>2 0" k35 2 r

AT A
S

2C _ cer® < cer
h 3 -0 T 4a(r-p)t
(1- r) 12(r P) T P)

It follows from (9) that

IN

. ce T - 2h

{ 10 —=£ - < 2L - A

£10) (r_P) 2r r

Then using (10) we have

(11) |V’|<2r—hé % for || <r-nh

Furthermore, since < > 1. then (9) implies that
(12) €<h’¢ h
The inequality (11) implies the following:

<. Thecircle' |§} < p = r-4h is mapped into
P
cer
IZ|£P+IV’<P+4(I'-}O) )
<p+%h< r -3h.
A - The image of | T1 < r-h covers at least

|z| < r-2h;
i.e., in |z|< r - 2h , the inverse mapping is defined and gives ¥ with |J'| <r-h.

Statement ( A) is a simple consequence of the implicit function theorem 1

L If z=F+v(¥) inlf/f < r-h, and |v| < 2h/r € 1/2 in S| <r-h,
then for |z] < r -2h thereisa ¥ suchthat |F| < r-h.

Proof: We construct the inverse mapping § = z + w (z) by iteration in the following

manner:

Set w, = 0
and wn+1=-v(z+wn),for lz] < r - 2h
as long as lwnl< h.

For those indices we have

- = 1 0 o
,wn+1 Wnl Izlin%}ihfv I ,wn anll

len—wn_ll,
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With the preceding assumption we see that S’l = §+ @ is definedin I$[< p.
Namely, if I§/<p =r-4h, thenby (x) we have |z]< r - 3h and by assumption
lz ) =lAz+f(2)[ < |zj+{f|< r-8h+ ¢ <r-2h by (12).
Since in lef < r-2h, the inverse map of z, = Sql + v ( Yl) is defined, we have

from () that ¥ is defined and is | j‘l( <r-h. Thus ¢ is defined in | Tl<

It remains to estimate @ in ;'S{(f) . Subtracting (7) from the equation preceding
it, we see that

L) = =VIATH @) 1 +vQY) +E[S+v (N 1-1(F),

or, since ]Tll = I AV+@l€r-n,
max |@[= max |v'|- max|[p| + max [f' - max |v|
IY(<]o |zl<r-h [P [§iIkr-h Z r-
From (11) max|v'| € 1/2,
80 that % max [@¢] £ max |f']" max|v)
P r-h r-h
In I§/<r-h |f'|<€/n so that
max |@]| € 2 —i€—5
(r-p)
which thereby proves the lemma.
e. Iteration.
We start with a mapping
z, = F(z) = Az+f(z) in |z|] <1 = r,
and in this region assume that |f| < €, - Applying the preceding lemma, we construct
a transformation
(
7 = Ul (z° 1))
such that
Z(11) - z(1)+f1(z(1)),

where z(‘ 1) < rl and f1 = @ . We now use a new notation because we shall

repeat the procedure again and again, constructing a transformation

where 0 - 2h .1
r 2
Iterating, we obtain
- _ _ ah _ ,h+tl T
|wn+1—wn|—r—lelw1 wol = @ lvli = @ 1
2 n+tl, r
— Z. —
or (W, I7)Z:0 (W, =W )| < (8+07+ + 8 ) 4
8 = 99 L _
< T-6f = 294 = h
Thus ?Wnl< h forall n. Now the convergence is obvious, so we have
lwi £ h
or [$/ =)z]+h € r-2h+h = r-h
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z(n"l): U (Z(n))= z(‘n)+u (Z(n))
n n
which takes the mapping Fn— 1 into
(n) _ (n)
Zq B Fn (z )
At each step, we have to diminish the radius of validity. Therefore, we set
| Z (n)’ {r
n
and n}ar.lxlfn|= €y
Our lemma now guarantees that
€
€ < 2¢ I 5 s
n+1 (rn “Toy 1)
provided that
(13) “n o <
- 5
(rn ro., 1) 2

We have to choose the decreasing sequence r so that it does not tend to zero,
which makes r -r ., very small, and thereby endanger the convergence of e?n

But since €, enters quadratically, we obtain a convergent sequence as we shall now

show.
Let r = L, L
e n 2 z_m ’
then r, = 1
>
r 1/2
d -r = —4.-21
an r, n+ 1 B
Hence, - C50(n+2) 2 , n+1_ 2
€peq = 202 €n T 1 €y .

with ¢, = 2¢ . Itis easy to deduce that
2. ,(28)
Z
€, © leyey)
and thus Gn —> 0 provided
2
(cl 60) < 1.

To verify the condition (13), we show that we can satisfy the inequality

o (01260)(2n) < 2—5n-11

This is obviously possible if 60 is sufficiently small, i.e., if €< 1/c2 where

¢, depends only on ¢, - For instance, c, = 04 will do.

2 1
Thus we have established that the sequence of mappings Fn converges, and,

2 i

in fact, converges quadratically.
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It remains to relate the new variables to the old variables. This is accomplished

with the transformation

Z(n'-l) — Un(z(n))
or ZzZ(O):UoUon,uoU(z(n))ZV(z(n))u
1 2 n n
This transformation is defined in IZ(n)I < r and satisfies Ian <1y =1
and (n) , o =
Vi(z = U o} < U = U = (1+u!) |,
n ) 1 2 n vgl v yT=rl vy
and the convergence of Vn(S) follows easily from
. 2% 4
|uz'/| = (026) >0 ; Cy = €y

Therefore, if e 0 is sufficiently small, the convergence of the iteration
procedure is established. That means, the mapping
2. =Az+f (z) in |z]|<1
with lf‘Ol = o can be transformed into the linear mapping (3) .
Finally, we show that we always can choose < arbitrarily small. Suppose
the given mapping is

z, = Az+f(z) in |z]< r.

Then with z = rz *, we have in |z*|4 1,

zf‘= z*+%f(rz ) = AzF+f*(z2%),
where £ (2)] =I%f(r'z*)[

N

r max |f'"f
jzZ)| < r
which can be made arbitrarily small. This concludes the proof.

Conclusion: The proof of the theorem on the annulus mapping uses very
similar ideas, but the estimates are much more complicated. The details can be
found in a-paper, "On Invariant Curves of Annulus Mapping, "' Go6ttinger Nach. (1962).
Another difference, in the case of differentiable mappings, is that the approximate

transformations have to be smoothened -~ i.e., approximated by infinitely differentiable
transformations.

Although these technoques look quite different from the usual methods of celestial

mechanics, there is a strong resemblance in this approach to von Zeipel'’s method. If
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F = F,(x) T F (xy )

is a Hamiltonian. which for u = 0 is integrable, then Kolmogorov's approach
consists of the construction of a canonical transformation

X = §+/tu(fg77)

y =7 +tpvig,y)
which transforms F into the Hamiltonian

F=a(5,7) =@,(9+007°) ,
which deviates from an integrable Hamiltonian only by terms which are quadratic
in /0.2 . Repeated application of this procedure leads to quadratic convergence.

This shows that the technique for removing the angular variables remains

as it has been previously. The new feature is that the expansion method has been
replaced by an iteration procedure in which the domain of applicability is carefully
controlled. Since these methods are so rapidly convergent, it can be hoped that

they can also be made useful for numerical computation.

X = (xl, C e ,xn) .y = (yl, C e ,yn) and y, are angular variables.
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Lunar and Solar Perturbations. 1

The long - range ( secular) effects caused by the moon and the sun are of primary
importance for establishing the stability of highly eccentric orbits of satellites. At
present no complete analytical theory exists that can treat such orbits. Thus we have
to resort to numerical integration to obtain information about the stability of the orbit
over a long interval of time or about the lifetime of the satellite.

Methods based on the use of an unaveraged disturbing function, such as those of
Cowell or Ercke, contain both short - and long - period terms. For artificial satellites
these methods require that the interval of integration be much less than the period of
the satellite, thus causing a large accumulation of round - off errors. The main long -~
range effects in the elements are produced by the long - range terms in the disturbing
function and by their "cross actions". The short - period terms can also produce
long - range effects through their mutual cross actions\ in higher approximations, but
such effects are very small, and over a very long interval of time, they can be neglected.
For these reasons, as well as to diminish the accumulation of round - off errors, it is
necessary at the very beginning to remove the short - period terms from the disturbing
function or from the components of the disturbing force.

Musen [1] suggested the use of Halphen's [2] form of the Gaussian theory [3]
as a practical method for determining the long - range effects through a step - by - step
integration. Previously Halphen's method was not in use, probably because of several
numerical errors in the original publication. All of them were corrected by Goriachev
[4], whose name should be associated with the method as well; the method in its
present form could justly be called the Halphen - Goriachev method. Some parts of
Halphen's original exposition can be easily recognized from the modern standpoint as
an application of the calculus of dyadics (matrices) in a hidden form. The problems
connected with the determination of directions are sometimes sources of errors in
Halphen's original presentation.

In Goriachev's work all the formulas given in the final collection are correct,
but there are some misprints in the theoretical exposition, which aré corrected in
reference [5]. Musen [1] suggested the use of Goursat [ 6] transformation and
the E summability to speed up the convergence of hypergeometric series that appear

in the Halphen - Goriachev method and to facilitate numerical computation.
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Lunar and Solar Perturbations. 2
Disturbed P
body

Let: dJ

m' = mass of disturbing body r

- . Disturbing
m = mass of disturbed body | body
r'

The disturbing force is
2 1
(1) F = Km (G- gm)

(2) p =r-r.

If the disturbing force is developed into a double Fourier series with arguments / and ¢,

the secular disturbing force [F] is equal to the constant term of the expansion. Thus

5 2T 21
_ km' ! '
(3) [F] 27 e A /0 (5 ;—,g)dldl .
Thus [F] is deduced from (1) by applying a double process of averaging over the
orbit of the disturbing body and over the orbit of the disturbed body.

The 'area integral' for the disturbing body can be written in the form

(4)  al' = (r®dv') /a'b' .

Hence 27 ' 27
1 r'oapeo - 1 104500 =
(5) ), ?gdf = 21ra'b'/0 r'idv' = 0.

Thus the indirect part -r'/ r'3 of the disturbing force does not produce any secular
effects, and (3) becomes
9 21 2%
k™ m!'
(6) [F] = %= L atral.
2T Jo Jo P
Let F0 be the average of [F] over the orbit of the disturbing body. Then
21
2
k" m!' /
F, = > £ af .
o 2™ Jo P

In the process of determining F0 , the position of the disturbing body is imagined to
describe the complete osculating ellipse. However, we are interested neither in short -
period terms nor in knowing at what moment of time the disturbing body will occupy a
particular position in its ellipse. This process of averaging is evidently a purely
geometrical one.

The geometrical locus of vectors p is an elliptical cone with its apex in the

disturbed body. Taking (4) into account, we can also write
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21
2

k% m' 2
(1) Fy = 5o . f{%r‘ dv' .

If we consider two neighboring position vectors p and P + d/o with respect to the

disturbed body m , then %r' dv' represents the area of an elementary sector with
the center in the central body.
Using (7) and defining

2
m'r'” dv'
(8) d)'" = 2 a'b' ’

we deduce
(9) F0=k2f;f§d/x. - Q\w

The integral is taken along the ellipse of the disturbing bodyrin the direction of the
motion. Equation (9) represents the Gaussian result: FO is equal to the attraction
of an elliptic ring over which the mass is distributed proportionally to the area of the
sector described by the radius vector r'.

Based upon the preceding theory, a collection of formulas has been obtained and
programmed for the actual computation of long - range effects in the motion of artificial
satellites, minor planets, and comets, using step -by - step integration, [5]. For an
artificial satellite, Halphen's method might give the information of the long - range
effects and the stability of orbits over intervals of approximately 15-20-years. For
minor planets, it can supply long - range (secular) effects in the elements of motion
over the interval of hundreds of thousands of years. The integration step can be taken
to be 100-500 years.

59



Lunar and Solar Perturbations. 4
References
1. Musen, P., "On the long - period lunisolar effect in the motion of the artificial

satellite,”" J. Geophys. Res., 66, 1659 -1665, 1961.

2.  Halphen, G.H., Traité des fonction élliptiques, vol. 2, Paris, 1888.

3. Gauss, K.F., Determinatio attractionis quam in punctum quodvis positionis
data exerceret planeta, si ejus massa, etc., Collected Works, vol. 3, p. 331,
1818.

4. Goriachev, N.H., "On the method of Halphen of the computation of secular
perturbations" (in Russian), pp. 1-115, University of Tomsk, 1937.

5. Musen, P., "A Discussion of Halphen's Method of Secular Perturbations and Its
Application to the Determination of Long - Range Effects in the Motion of Celestial
Bodies," Rev, of Geophysics, Vol. 1, no. 1, February 1961, pp. 85 -122.

6. Goursat, E., Ann. Sci. ﬁcole Norm. Suppl. 2, 10, 3 -142, 1881.




|

2510°
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and ther Complications
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Heat Transfer. 1.

I. Introductlon.

There are many important heat transfer problems 1n
which a material changes phase or in which one material
is transformed into another. The melting or solidifica-
tion of a substance, such as the formation of ice or
sdlidification of castings, 1s an example of the former;
the progress of a temperature-dependent chemical reaction
through a solid is representative of the latter. The
first published discussion of such problems seems to be
that of Stefan (1891) in connection with a study of the
thickness of polar ice; therefore, the "freezing" problem
is often referred to as the Stefan problem.

The essential new characteristic of this type of prob-
lem is the existence of a moving surface of separation
between the two phases. Heat can be liberated or absorbed
at this interface, and the dynamic and thermal properties
on either side of this surface can also be different, so
that the problem i1s of conslderable difficulty. The motion
of fhe interface has to be determined to obtain a solutlon
so that the problem is nonlinear. For speclal cases,
exact solutions have, nevertheless, been obtained. See
"Carslaw and Jaeger (1959) for further discussion and de-
tails of such problems where conduction 1s considered to
be the only heat transfer mechanism.

Considerable new interest in problems of the general
type mentioned above began to be shown in the early 1950's
in connection with the cooling of vehicles which reenter
the Earth's atmosphere. At the hypersonic speeds of re-
entry, the hot gas in the layer between the bow shock wave
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(Fig. 1) and the body is partly or fully dissociated.
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Strong concentration gradients are produced when this mix-
ture of atoms and molecules enters the boundary layer
around the body and heat energy is transferred toward the

surface, partly by diffusion and partly by heat conduction.

Recombination reactions occur in the boundary layer, and
some of the gas components may react with the vaporizing
surface material. In addition, the high-velocity, high-
temperature air flowing around the body leads to aero-
dynamic heating and heat convection. The details of these
phenomena are extremely complicated, but it has been shown
by Lees (1956, 1958, 19%0a)and Fay and Riddell (1958) that
the heat transfer rate from the gas depends primarily on
the total enthalpy difference across the boundary layer,
and not on these details, provided that the ratio of mass
diffusivity to thermal diffusivity of the gas 1s nearly
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unity, i.e. that the Lewis - Seminov number, Le = Pr/Sc =
[3D12 C = 1, where Pr = c ‘A%K 18 the Prandtl
number, Sc-m/6¢3D12 is the Schmidt number, f)is the
gas density, D12 is the mass diffusion coefficlent between
species 1 and 2, Cp is the average specific heat at
constant pressure,ﬂ<is the thermal conductivity, and
A is the ebsolute viscosity coefficient. The additional
effects occurring when the Lewis - Seminov number is not
equal to unity are discussed by Lees (1958).
At hypersonic speeds heat 1s also transported to

a body by radiation from the hot gas 1n the shock layer.
However, from the work of Kivel and Bailey (1957) it can
be deduced that for most entry trajectories, the radiative
heat'transfer rate from the gas 1s much smaller than that
by convection except for direct entry into a planetary
atmosphere at near-normal 1ncldence, in which case, gas
radiation can be dominant. However, infra-red radiation
away from the body is important at high temperatures

See Lees (1959b) for additional comments on radiation.

The net effect of all this is that the peak reentry heat
transfer rates for ballistic missiles with a low drag to
weight ratio are of the order of 2500 - 3000 Btu/ft /sec,
which results in a power input of 15 kilowatts over an
area about the size of a small postage stamp.

The use of a solid heat sink 1i.e., a gaod thermal
conductor, to keep body surface temperatures at reasonable
values was shown by Soloman (1959) to be 1lnadequate at
the large heat transfer rates assoclated with ballistic
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reentry. Therefore, other means of thermal protection

are necessary. Consequently, forced mass transfer sYstems,
i.e., transpiration (fluid injection) cooling devices

and self-regulating mass transfer systems, i.e., ablative
processes were considered. Of the two, the latter showed
the greater promise.

The term ablation refers, in general, to processes
in which surface material 1s removed together with an
associated amount of heat. However, this process can
occur by any one or combinations of the followlng
phenomena:

(1) melting, possibly in conjunction with vaporiza-
tion of the molten layer. Such a process occurs when the
heat absorbed by the ablating material causes two phase
changes. Materials which lead to this type of behavior
are usually said to be glassy. Typilcal of this class
are refractory oxides such as quartz, fused silica, and
Pyrex glaSs° These materials are characterized by
high viscosity at elevated temperatures and the vilscosity
decreases rapldly with small increases in temperature.

In addition, these materlals have quite low thermal con-
ductivities, good thermal shock properties, and high

heats of vaporization. All these properties are.deslrable
for ablation materials. Since the melting and vaporization
temperatures for glassy materials are relatively hilgh,
surface temperatures as high as 3000 - 4000°K can be
attained during reentry or similar conditions and re-
radiation from the hot surface can be appreciable.
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(2) sublimation, which occurs when the static pressure
in the shock layer is below that of the triple point of
the material. Under such conditions the 1liquid phase
of the material cannot exist Thus, the material goes
directly from the solid to the vapor state as the temper-
ature increases. Sublimation thus basically refers
to a physical change of state. Similar results, from a
thermal prbtection point of view, can be also obtained
by any one of the followlng forms of chemical decomposition
of an ablating material; The distinétion is, however,
that a chemical change occurs with the latter:

(a) depolymerization, when a complex hydro-
carbon polymer breaks down into a number of monomers due
to chemical reactions at high temperatures. The monomer
may then react with any oxygen 1n the surrounding gas by
a" combustion process thus increasing the heat transfer
to the ablating substance. Many plastics such as polytretra
fluoroethylene, commonly known as Teflon fall into this
category.‘ Although there are exceptions these matefials
also have very low thérmal conductivities and low heats
of vaporization. Some of these materials, like Teflon,
decompose (sublime) at low temperatures (and low heat
transfer rates) and the surface temperature remains
at or below the sublimation temperature. Thls fact
together with the lowthermal conductivity minimizes the
heat conduction problem for such materials, but also
precludes any beneficial effects of re-radiation.
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(b) pyrolysis of the solid phase, due to thermal
decomposition of molecules at high temperatures. For
organic compounds this usually results in the formation
of such gases as methane, acetylene, or hydrogen and a
solid char-like residue. This process is not one of
combustion so that it need not occur in the presence of
oxygen. Complication may occur since combustive reactions
usually occur between the gaseous hydrocarboné produced
and the oxygen in the surrounding air. This type of
process 1s usually assoclated with reinforced plastics
such as phenolics and polyesters with glass, nylon, and
asbestos reinforcing fibers. In contrast to the low
temperature sublimers, such materials as phenolics sublime
at high temperatures and, therefore, can have surface
temperatures of several thousand degrées kelvin. The
re-radiation is, however, complicated by the erosion of
the char.

(c) surface combustion which depends on the oxida-
tion process of the material. Graphite and carbonaceous
materials are typical for this type of ablation.

In each of these processes there 1s essentlally a
moving Iinterface, whose motion‘must be found. Since,
as was indicated above, the relatively simple problem of
pure heat conduction with a moving interface was difficult
to solve it would appear that the additional complexities
assoclated with aerodynamic ablation viz., aerodynamic
and pressure forces resulting from the surrounding high-
temperature high-velocity gas stream, mass transfer,
chemical reaction, etc., make the description of the

.
ablation process nea

4+
considerable work on this type of problem has been done.

N 1
y impossible. Nevertheless,
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Since it is the purpose of this series of lectures
to show how so complex a physical phenomenon can be
analyzed theoretically attention will be given only to
materials which melt before they vaporilze. Although
materials of this type do not offer the best thermal
protection for ballistic-type reentry (as will be
discussed below) they are of considerable interest 1n
other regards. Also the rather extensive work dealing
with melting ablation affords numerous examples for the
present purposes. The work of Lees (1958) and Roberts
(1959) are representative of treatments of subliming
materials and that of Scala (1959) reviews the studies
of decomposing materials.

The principal thesis of this lecture series 1s that
deductive rather than inductive methods are essential for
the description of new and complex phenomena, that is,
specializations from the most general situation should
be made in studying such problems rather than making
generalizationé from simplified cases. In this way, not
only is a deeper understanding of the problem obtained
and the primary physical aspects retained, but also the
Justifications and limitations of the simplifications
are explicitly indicated.

2. General Considerations.

In order to control the ablation process it is
essentlal to have as clear a detalled description of the
associated phenomena as possible. The heating mechanism

has been described above; the physical mechanisms of melting
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ablation will now be discussed. It should, however,
firét be noted that some materlals that melt before they
vaporize have a distinct melting temperature whereas
others, like glassy materials, do not. Attention will
be given herein only to the latter type; the differences
in the formulation between the two is shown, for example,
by Chen and Allen (1962).

As the material is heated, energy is absorbed in the
solid phase by the materlal's heat capacity. The surface
temperature rises and the viscosity decreases (i.e. the
substance melts) and more heat 1s absorbed by the latent
heat of fusion. When the viscosity becomes sufficiently
low the material starts to flow under the influence of
the aerodynamic shear and pressure forces and body forces,
if they are of sufficlient relative magnitude. Thils repre-
sents the onset of ablation and heat is then also convected
by the motlon of the liquid layer. It 1s also péssible
that the liquid layer will reduce the radlatlon transfer
from the hot gas to the surface. Since viscosity of such
materials increases essentially exponentionally wilth
decreasing temperature the flow of material 1s confined
mostly to a thin layer very near the surface. As the
ablated material flows it is further heated by aerodynamic
heat transfer and some of 1t can vaporize as the sprface
temperature of the liquid layer increases. Good ablation
materlals absorb a large amount of heat through vaporiza-
tion and/or decomposition. However, more important than
this absorption are the phenomena that occur in the gas
boundary layer as a result of the addition of foreign
materlal vapor. These phenomena result in lower heat
transfer from the hot gas and are usually referred to as

"plocking" effects. This reduction in the heat transfer

v .
R
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from the hot gas by adding mass to the gas boundary layer
results from the absorption of heat by the vapor due to
its heat capaclty as 1t diffuses fThrough the gas boundary
layer and by changing the gas boundary layer velocilty and
temperature distributions (and, in some cases, the gas
transport properties). The latter have been extensively
studied (see Lees (1958), for example). As the material
flows downstream along the body, 1t may reach a region of
lower heating and freeze there; if not it wlll continue to
behave as described above.

Thus, the entire complex nature of the physical
problem is now apparent. On the gas-slide of the moving
gas-1liquld interface not only are there the aerodynamic
and radiation heat transfer phenomena to be considered, but
also the influence of foreign mass addition on these must
be accounted for; on the liquid side the coupled dynamié
and thermal phenomena must be treated. Finally the
mutual influence of one side on the other results in a
problem to be solved that is orderé of magnitude more
difficult than the Stefan problem, which 1s the classical
problem of heat transfer with a moving lnterface.

The question now arises how to proceed to analyze
a problem of this sort. Due to the urgency for practical
answers 1n the nation's embryonic space program emphasis
was flrst placed on the rapid acquisition of gross design
criteria from simple analyses 1in conJunctlion with some
experimentation. A survey of these design techniques is
given by Adams (1959). This work was 1limited to aero-
dynamic forebodies (in particular to their stagnation
region); also only gross characteristics such as heat
transfer and total material loss were of primary interst.
On the basis of such work, interest in the dynamics and
heat transfer of melting layers waned when it was found
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that the vaporization effects were dominant for thermal
protection, particularly for ballistic-type reentry.

In addition to the design studles there were attempts
made to describe the melting ablation process in detail.
It is thils work which will be discussed in some detaill

herein. Recently manned-vehicle reentry with its relatively

low-intensity long-duration heating'during which melting
can occur before vaporization has restimulated work

on melting ablation. Perhaps the greatest impetus for
continued studies of this kind is provlided by Chapman

and his co-workers (1960), (1962a), (1962b). They

applied entry flight dynamics and melting ablation theory
to the question of the origin of tektites. Briefly,
tektites are natural silica glass objects of similar
composition that have been found in seemingly disparate
regions around the world; furthermore they bear little
resemblence to the local terrain in which they are

found. (See Baker (1959) for an extensive account of
tektites.) On the basis of existing ablation theory
Chapman has implied that some of the tektites are of lunar
origin. Clearly more detailed information on melting
ablation 1s necessary to determine the validity of this
assertion. In particular, most tektites are distinctilvely
characterized by concentric ring waves on their surfaces
and the relation of these waves to the dynamics and the
heat transfer of the body must be established.
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3. Inductive Analyses.

Most all the approaches to determine the detailed
characteristics of melting ablation are based on inductive
reasoning, 1l.e., speclal models are analyzed 1n the hope
that they will indicate the significant general behavior
of melting layers. One of the earliest analyses of this
type appears to be that of Landau (1950). He treats the
problem of the melting of a solid under the assumptlon
that the liquid is immediately removed on formation.

This prime assumption 1s presumably made on the basis that
the large aerodynamic forces would lead to such behavior.
Clearly, then this model denies any important role of the
liguid layer, but other than intuitively, this assumption
1s not as yet Justified. The distinction “etween Landau's
problem and the Stefan problem 1is that in the latter the
liquid is taken to remain on the solid and, thereby,

" influence its heat transfer; in the former the 1liquid
plays no important role. Landau suggests that his analysis
could also apply to the case of sublimation, and it seems
as 1f his "model" does, 1n fact, more closely simulate
that case.

To obtain some general results and an idea of the
structure of the problem, it is first formulated somewhat
generally. Specialization is then made to obtain more
detalled results. Conslderation is, accordingly, given
to the one dimensional heat conduction in a solid which
initially extends from X = 0 to X = a. Heat 1s considered
to flow into the solid through the surface X = 0 at a
rate H(t) per unit area. The other surface, X = a, 1is

0L2
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taken to be Insulated. If heating continues long enough,
the face at X = 0 reaches the melting temperature Tm

and melting starts. Note that this analysis does not
pertain directly to glassy materials which have no
distinct melting temperature. The liquid 1s assumed to

be blown away immediately on formation so that the surface
of the solid at X = 0 moves inward and at time T is at

the position X = S(f). If the heating rate H(T), decreases

enough, the surface temperature can become lower than
the melting rate so that S(T) remains constant; melting

can resume if H(f) increases sufficlently. The temperature

of the solid T(X,t) and the thickness melted S(E) are
the quantities to be determined; thelr existence and
uniqueness are assumed on physical bases (see Boley
(1963) for a uniqueness proof).

The process 1s governed by the dimensional equa-
tion expression conservation of energy for unsteady,
one-dimensional heat conduction, viz.:

pcg—%= 'C?R'(kg%) for S(f)e X«a £>0

(3.1)
and the boundary and initial conditions: ’ ’

T(X,0) = T (X)<£ T 0L X<=a £=0 (3.2)
g—% =0 X =a E>o0 (3.3)
H(E) = -k QT + Pr & X =S(E) £>0 (3.4)

o X af T

where F)denotes the density of the solid, c¢ 1ts specific
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heat, k its thermal conductivity, T the temperature,

£ the time, X the distance from the initial position of
the heated surface, To (X) the initial temperature
distribution, and L the latent heat of fusion. The
physical interpretation of the initial and boundary
conditions expressed by Equations (3.2) and (3.3) has
already been given. The last equation expresses the fact
that the heat input H(t) equals the rate of heat flow
into the solid plus the rate of heat absorption by
melting. Equation (3.4) will be valid both durlng
melting and non-melting if it is specified that at the
neated surface X = S(t).

ds >0 ror T(s(E), E) =T (3.5)
at - ‘
ds_ _ 4

= =0 for T(S(%), T)< T (3.6)
at

To eliminate the moving boundary from the boundary
conditions let

§ = (ax)/ [a-s(})] .

The boundaries are then fixed at .§==O and f = 1 and
Equations (3.1) to (3.6) become

Pc [33%+ §  as QT} _1 23_

d (Al
= S ST st 5P

0<§ L1, >0 (3.1a)
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7(x,0) = T (§)<T_ 02§21, £=0 (3.2a)
QT _ 0 §= 0, t>0 (3.32)

a-s ¢ af
i.'_g‘_. >0 for T(1,%) =T §= 1, ©>0 (3.ha)
t
dS
=2 = for T(1,E) < T
- (L,E)< T,

In this form the nonlinearity of the problem is
readily apparent from the fact that S and its derivative,
which occur in the coefficients of the differential
equation, depend on the temperature gradient (see Equa-
tion (3.4a) ). This nonlinearity constitutes the
essential difficulty in determining the unknown moving
boundary S(£). Landau obtains some qualitative results
on the melting rate and time and expressions for the
temperature distribution in terms of the moving surface
from the above boundary value problem and he suggests
that numerical methodé'be used to obtailn explicit solutions.

To obtailn a more tractable mathematical problem,
Landau (1950) considers an even more special problem
than the above. On the basis that in practice the melting
will proceed only a relatively small dlstance into the
solid he assumed that the body can be taken to be seml-
infinite, 1.e., a— ©0 . Also it 1s now assumed that
the specific heat, c, the thermal conductivity, k, the
initial temperature To and the heat input rate are all
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constants with H> 0. Even though the variation of these
quantities can be important 1ln some cases, the greater
detall obtained from the solution found by taking them to
be constant 1s consldered to Justify this assumption.

The boundary condition given by Equation (3.3) now
becomes ’ )

3—%—» 0 as X—~»>o©  £> 0 (3.7)
which 1s equlvalent to

T—> T, X—>co , t>0

The temperature distribution T(X,t) during any period
where there 1s no melting 1is not difficult to find, when
¢ and k are constant. Various well-known methods such as
the use of Luplace transforms (Churchill (1944) ) or the
method of sources and sinks (see Chapter X of Carslaw

and Jaeger (1959) ') can be used to find that it is
, L

T(X,t) =T, + 2H(p-gﬁ) "lexxa (- I}i—f) -
X _erfc | X

=T, + 2H (()'%E )E ierfc [2}((&5)%]

wherecC=k/f7c is the thermal diffusivity and lerfc denotes
‘the integral of the complementary error function in the
notation introduced by Hartree. (1935-1936).

=r}
o
(=]
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The time when melting starts, Em, (at X = 0) can be
found from Equation (3.8) to be ’

g I £k (n -1)2- L (PE o )P
voH (3.9)

represents the ratio of the heat content change from

T0 to Tm to the heat of fusion with a convenient
multiplicative constant. Transformations will be made
below such that the entire problem is expressed in terms
of only the one parameter, m.

For the semi-infinite case belng treated now the
moving boundary can be eliminated from the boundary
conditions by introducing a new coordinate, X - S(E)
which is the distance measured from the moving interface
of the solid. Since only the melting process 1s of
interest, time will be measured from tm. To make the
equations dimensionless, the followlng new variables
are introduced

T2 (T T,) (3.10)

-
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X - S(E) (
ty)? 3
t
t = - - l (30
t
m
_ EI; S
7 = 5 % (3.
m
g _ do _ 9 das (3
dt at '
Thus the heat conduction equation and the initial and
boundary conditions become:
o 29 S0
JZ QZ (3.
o = lerfc (—,f—) Z>0, t=0 (3.
e—> 0 Z >0 t30 (3.
1 =2 98 4 {(v) Z=0, t>0 (3.
o=
1
o =17 "2 Z=0, tZo0 (3.

This formulation 1s particularly convenient for both
numerical and approximate solutions because only the

17.

11)

12)

13)

14)

15)
16)
17)
18)

19)

single parameter, m appears in the differential equation

and no parameters occur in the 1lnitial and boundary
conditions.
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Equation (3.18) should be regarded as the defining
relation for the unknown reduced melting rate C(t).*
This quantity can be eliminated from the equations by
substituting it from Equation (3.18) into Equation
(3.15). Thus, it follows that

2
gg - 3292+m[1+2 SZOt} g—zg— (3.15a)

which 1s clearly nonlinear.

A number of speclal cases of the above defined
boundary-value problem are amenable to further analysis
and can give worthwhile information. Firstly, a steady-
state (time-independent) solution will be sought for,
i.e., one in which the temperature of the melting,
semi-infinite solid approaches a state characterized by
the inward movement at a constant velocity of a fixed
temperature distribution. For continued heating it 1s
clear that the temperature must increase or remain
constant with time, 1l.e.,

38/5t=o0.

Since, from Equation (3.19),

N

o<

1t follows that ©°/3t —> 0as t—>eo and that ©
tends to a steady state. If 3 °/8 t = 0 then C is
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constant, say ; = g(:, the constant steady-statg value of
the reduced melting rate. From Equations (3.15) and
(3.17) through (3.19) this steady state is found to be

6—> o(2) =T "% exp(-n § ,2) (3.20)
with

g o= (l+2rr1'ﬂ'-'%)":L

For the steady state rate of melting in terms of dimen-
sional variables, there follows directly from Equatlons
(3.14) (3.18) and (3.20)

das

—_— >V = H 3.21
at Plr+e(T, - TO)] ( )

which 1is perhaps physically obvious. To obtain the
thickness melted Equation (3.21) would have to be
integrated. However, the heating rate is in reality not
constant as given by Equation (3.21) for the steady state.
Therefore, integration of Equation (3.21) gilves an
approximation (for constant melting rate) for the thickness
melted which 1s ‘

s(t) 2v(t - t) (3.22)
and the corresponding approximate temperature distribution

1s obtained from Equations (3.9) through (3.11) and
(3.20) to (3.22) as

T+ (T - T,) exp{;%—[x -v (E - Em)]} (3.23)
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Actually, the melting rate 1s initially less than its
steady-state value, so that Equations (3.22) and (3.23) give
values that are too large.

To obtain the proper asymptotic (for large time)
expression for the thickness melted, one starts with the
complete unsteady heat-conduction equation, Equation
(3.1). Upon integration of this equation over a region
in the X, t - plane, application of Gauss's theorem and
the boundary conditlons there is obtained (See Landau
(1950) for details) an equatilon expressing the equality
between the total heat inflow to a given time and the
sum of the change in heat content in the remaining solid
and the liquid. Thils last equation can be solved explicitly
for the thickness melted to give (in dimensionless form)

@

g (t) =§c(t +1 - aj o(Z,t) az ) (3.24)

o
The asymptotic or steady-state value of O 1s obtained by

use of Equation (3.20) in (3.24) and is
. _
g (£)»g, (t) = (t +1) - 24T %n (3.25)
or, in dimensional form

s(8) = vE - (‘) (1, - T,) (3.26)

o]

The corresponding exact steady-staté temperature distri-
bution 1is '
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T=T + (T, -T,) exp{—oL—v—-[X-V‘E+k(Tm—To)/H]

(3.27)

Since ¢ (Z,t ) increases with t, in general, it
can be seen from Equation (3.24) that the steady state
value gives a lower bound for the thickness melted.

Also since from Equation (3.8)
00

O
jG(Z,O)dZ=jierfc(Z/2)dZ=:l€

o Q

an upper bound is obtained from Equation (22), that is,

V(E - §) = s(8)> vE - (‘) (T, - T,) (3.28)

o]

The difference between these two bounds is

k(T -T) -1
— [1_1&1 (1+c(I£m-TO)) ]

In practice, this last quantity is often small so that
the steady-state value is a good approximation of S(t )
for all t> tm.

By taking derivatives of Equation (3.24) it is
found that the melting rate is always less than 1ts steady
state value, i.e.,

dSLV,

dt

Physically, this result is also obvious since the heat
content of the solid is increasing during the melting.
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The next approximate solution of the boundary-value
problem defined by Equations (3.15) to (3.19) 1is the
unsteady one for m = O. The parameter m in Equation
(3.15) can take on any positive value. The valuem = 0O
does not correspond to a physically realizable situation
but 1t can be considered to be a 1limit when the latent
heat, L, becomes large. In this case the boundary-value
problem can be solved in terms of tabulated functions.
This solution is of value since it is one limit of the
set of solutions for 0Zm«£eo; also it will represent
an approximation for any finite m when the dimensionless
time, t, is small, because then g(o) = 0 and the last
term of Equation (3.15) vanishes for that reason.

For m = O the equations are linear. The solution
of Equation (3.15) does not involve Equation (3.18);
the latter serves merely to find the melting rate g(t)
from the solution. For this case then the solution can be

wrltten as
20

QO(Z,t) =7T'_% erfc(Z/2t) + (477‘1;)'%[ ierfc (—%—)
'{exp [' j%ﬁ) 2]' exp[— %&Lﬁ} ¢ (3.29)

The indicated integrations are quite tedious, therefore,
only the final result is given as

o(z,t) ='7T_% erfc(2/2t) - (2/ ) arc tan (t'%)_ +

exp [- 22{4(t+12 erf {2/2 [t(t+1):,
vreozw (2/{a(t+41) ]2, ¢7%) (3.30)

Nj-

N 623



Heat Transfer. 23.

where

B L
W(B,¥) = (2¢r>'1f f " exp [-(x2 +y°)/2 ]dy ax
07 o .
is a function tabulated by Nicholson (1943).

The dimensionless melting rate corresponding to
this solution is

go(t) = (2/1T") arc tan (t%) . . (3.31)
and the melt thickness is

(rb(t) = (247 [(t+1) arc tan (t%) - t%] (3.32)

Note again that these can be considered as approximations
for small dimensionless times.

The other limiting case, m =00, can be interpreted
as that for no latent heat (L =(Q). For steel with T
as the room temperature, the value of the parameter m
is 27, which is "practically infinite" in the sense that
the temperature and melting rates will be close to those
for m infinite.

For L = O the definitions of ¢ and C by Equations
(3.13) and (3.14) must be modified. Therefore, quantities
independent of L are defined as

W= no = -2, HS | 3.33
T ) (3.33)
_ _ aw _ Pc ) _ds_
A-nt dt 2 H (T = o) at
(3.34)
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Equation (3.15) 1s now

2
98 . 978 o0
St oz 2 +’<§t) oz S t7.0(3.35)
and the interface condition, Equation (3.18), 1is
1=-22° Z =0, t>0 (3.36)

oz

There is thus no equation defining,/{that is similar to
Equation (3.18) for C'. However, from Equation (3.19),
86/3t = 0 atz= O so that if the derivatives are continuous
at Z= 0, t > 0 Equation (3.35) gives

2
oz

9z 2

.and by use of Equation (36)

2
A () = 2—3—2-_9-2 Z =0, t> 0 (3.37)

which takes the place of Equation (3.18). The modified
boundary-value problem for the case m =ao 1s then defilned

by Equations (3.35), (3.16), (3.17), (3.37) and (3.19).

It 1s to be noted that no important mathematical
simplification resulted by considering the limlting
case m =00 as it did for m = 0. Landau, therefore,
obtained solutions for the case m = @@ by numerical methods
after first rewriting the problem in terms of the depen-
dent variable 86/9z so that A would be determined with
greater accuracy than is possible by numerically obtained
second derivatives (Equation (3.37) ). The results of
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his solution for m = O and calculations for m > 0 are
shown on Figures 2 and 3. In Fig. 2 1t can be seen that
for all m, the values of approximate those for m = 0
for small values of t. Fuxthermore approaches 1ts
steady state more rapidly the larger the value of m. The
curves in Fig. 3 approach unity as an as ptote. (The
ordinate on this figure for m =co 1s /{szc rather than
,/§C' D It can be seen on this figure that as m becomes
large the slope of the curves near t = 0 becomes very
large. The thickness melted 1s also presented by Landau.
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For large valves of m it would seem that the last
term in Equation (3,15) would be dominant and that the
other two terms could, therefore, by a perturbation analysis
be shown to be negligible. However, such an approach
leads to a singular perturbation problem, i.e., one in
which the highest-order derivatives (here both the ones
in the variables t and Z ) would be eliminated. The
order of the differential equation would be reduced in this
way and, as a consequence, all the boundary and initial
conditions could not be satisflied. Therefore, the highest
derivative terms cannot be neglected near the boundaries
although they may be negligible away from them. On this
basis it can be concluded that in problems of this type
the derivatives of the dependent variable near the boundaries
the so-called boundary-layer theory of viscous fluilds.
See Lagerstrom et al (1949) and Friedrichs and Wasow.
(1946) for further discussion of such problems). For the
present problem then 1t is to be expected that 1in cases
of m large, the time and space derivatives of the dimen-
sionless temperature, ©, should be very large for small
time (t =~ 0) and near the surface (z =O0). This qualita-
tive behavior can, of course, be determined before an&
calculations are made and should be made then. In this
way,one can make certain that small énough mesh size 1s
taken in regions where large derivatives are expected.
Relatively simple observations, such as were made above,
which give qualitative trends are most helpful to avoild
errors in the numerical calculatlons and to shorten the
computation time. Note on Fig. 3 that the type of behavior
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predicted by the above analysis 1is, of course, obtained.
Landau (1950) gives no such discussion in his paper but
does mention in the course of his formulation of the
numerical procedure that rapld changes are to be expected
at the start and, therefore, small mesh sizes are to be
used there.

In accord with the above discussion note, on Fig. 3,
the difference between the curve for m =eo (L=0) and those
for all other values of m (L > 0), the former does not
satisfy the initial condition, i.e., that the melting
rate be zero at the start of melting. This behavior
also was predicted in the discussion above and explained
on the basis that the highest derivative 1s eliminated
at the limiting value of m. This situation is analagous
to the neglect of viscosity in fluld mechanics in which
case nonzero tangential surface velocitlies are obtained
rather than zero values. Landau merely points out that
this discontinuity in time does not influence the
continuity of the spatial temperature gradient (3 T/ 9 X),
but says nothing more about it. However, this says
nothing about the continuity of T with respect both to
time and space and no temperature distributlons are
presented in the paper.

The result of Landau's analysis of a model which
neglects any influence of the liquid on the heat transfer
process 1s that melting rates and temperature distribu-
tions for unsteady one-dimensional conductlion are obtained.
Obviously, nothling can be said about the heat transfer
around a given body from this analysis. The melting
rates then are of value to gilve indications of local
ablations, and the temperature distributions also lead to
est;mates of local heat transfer.
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Because the analysis and computations for even so idealized

a problem as Landau's are so difficult and tedious approxi-
mate methods of solution have received considerable atten-
tion. In this regard it is surprising that Landau did

not use a perturbation method to obtain approximate solu-
tions for small values of m (see Equation (3.15)) Many of
these approximate methods of solution follow directly

from methods used in heat-conduction problems without
melting, while others introduce new procedures particular
to melting and ablation. A comparison of some of these
methods for a particular re-entry heating rate is given.
by Blecher and Sutton (1961). Extensive reference lists
can be found in the work of Economus (1961), Sunderland
and Grosh (1960), Murray and Landis (1959) and Dewey

et al. (1960).

Two of the methods for solving melting and ablation
problems that have been in the fore are the heat balance
integral method of Goodman and his coworker (1958),
(1960a) and (1960b) and the variatlonal method of
Biot (1957), (1958), (1959a) and (1959b). Goodman's
technique is similar to the Karman-Pohlhausen method for
viscous flows and uses the integrated heat-conduction
equation with an assumed temperature distribution. Thus
the governing differential equation is not satisfiled’
point by point but rather on the average and the boundary
conditions are satisfled exactly. The advantage of this
method lies in its ease of application, although there
are 1n some cases difficultles 1n satisfying the imposed
boundary conditions. This aspect of the problem is discussed
by Goodman (1960b).
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Biot's variational method 1s based on the concepts
of irreversible thermodynamics and has not been applied
as much as the heat-balance integral method. Citron
(1959) and (1960) extended Biot's method to ablation
problems but due to his application of an inconsistent
constraint obtained poor agreement with the more exact
numerical solutions, This defect was corrected by
Biot and Daughaday (1962) and better results were
obtalned.

It should be kept in mind that both of these methods
are approximate ones. Therefore, some lack of agreement
with exact solutions is to be expected. For the ablation
problem treated by Landau (1950) good agreement is obtailned
between Landau's results and those from the two approximate

methods for times that correspond to steady-state conditions.

In the transient range after melting starts, the agreement
1s not as good., Under all conditions, however, Gbodman's
treatment of the problem (1958) gave better results
than Blot's. The shortcomings of the two methods are
described by Lardner (1962) and the explicit comparisons
are made therein with Landau's calculations.

Some Liquild-Layer Effects Included.

Another mathematical model related to melting ablation
was studied by Goodman (1958b). The melt is considered to
be an 1ncompressible viscous fluid with constant properties
that 1is swept off the solid by aerodynamic forces and the
solld is considered to be at its melting temperature.
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The latter together with the constant viscosity assumption,
of course, precludes any relation to glassy materials;

also solids to have a constant temperature, as assumed,
would have to have large thermal conductivities and would,
therefore, not tend to ablate.

Unfortunately, little motivation for the choices of
this model is given in the paper and 1ts relation to
sltuations occuring in practice is not discussed; an
inference 1s only made that the model should approximate
conditions lmmediately after the start of melting.
Presumably, this model was chosen to show, in contra-
distinction to Landau's problem, some influence of the
liquid layer on the heat transfer and to gain some under-
standing of the dynamics of the liquid layer. However,
1t should be clear that Goodman's model completely neglects
the effects of convection (heat capacity of the liquid)
so that the only influence of the liquid layer on the
heat transfer is restricted to its effect on the interface
motion. No attempt is made to Jjustify thils assumption as
to the dominant effect of the liquid layer. 1In a sense,
thls model essentially describes what happens 1n an
airstream to a layer of water on a solid under isothermal
conditions. As a matter of fact, Goodman used Just such
an experiment to indicate the same qualilitative trends
which he predicted in his analysis. It may well be that
this model simulates closely conditions at the start
of melting, but this certainly needs further substantia-
tion.
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After the formulation of the general equatilons that
govern this model, speclalization is made to the case
of a flat plate, because analytical soltuilons are possible
then. Basically these are obtained by lntegrating across
the liquid layer to eliminate the coordinate normal to the
body and then to apply a similarity transformation which
reduces the partial differential equation to an ordinary
one. A similarity transformation is one in which the
independent variables are grouped together like §= txm
and explicit dependence on elther variable 1is removed
from the differentlal equation and boundary conditlons.
'The solutions so obtailned implicitly are,such that the
dependent variables at a fixed value of one of the in-
dependent variables have similar distributions in terms
of the second independent varilable. Clearly, such solutions
are meaningful for restricted,physical situations.
This point will be discussed in greater detail subsequently.
Goodman obtailned the melt thickness as a function of time
for several different thermal boundary conditions, but
unfortunately made no comparison of his results with
Landau's (1950). Such a comparison, if possible, should
be of some importance.

One particularly interesting result of Goodman's
analysis is the prediction that as part of the starting
phenomena. the liquild moves downstream in a wave. ‘His
simple experiment, described above, gave qualitative
support to this prediction.
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Liquid-Layer Effects at Stagnation Point.

The last of the inductive approaches to be discussed
in detaill is that of Sutton (1958). This work, too,
has as 1ts primary objective to consider the influence
of the liquid film on the heat transfer and ablation of
bodies. It 1s, furthermore, eXplicitly formulated for
glassy materials. Specific consideration 1s given to the
stagnation point of aerodynamic forebodies on the basis
that the heating is greatest there. Sutton further assumes
fhat the viscosity is a function of temperature and that
the process 1s quasi-steady, 1.e., that the behavior at
each instant can be determined by the time-independent
solutions at conditions appropriate to that time.
The conditions under which quasi-steady behavior 1s to
be expected are not delineated.

Sutton starts from the basic equations for incompres-
sible laminar boundary-layer flow, i.e. the equations
which are associated with large Reynolds numbers. The
coordinate system used for his analysis 1is shown in
Fig. 1; it 1s fixed to the interface between the gaseous
boundary-~layer and the molten material, It is assumed
that the rate of change of the body shape due to melting
is small. For elther two-dimensional or axisymmetric
bodies the equations governing the liquid flow and heat
transfer which express, respectively, the conservation
of mass, momentum, and energy are.
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5% (Ur € ) + —aa; (VR €) =0 (3.38)
@(U%+vg)=-§—§+-§%(ﬁ%—g) (3.39)
§_§=o (3.40)

Poy WEE+VEE) -v B+ <87+
/.,(.gg)a (3.41)

where € = O for two-dimensional bodies and € = 1 for
axisymmetric ones. The other quahtitiés elther have

been previously defined or are given on Fig. 1; cp denotes
the specific heat at constant pressure. Sutton states
that 1f the Reynolds number were of unit order of
magnitude the inertia terms (left side of Equation

(3.39) ) could be omitted, but that the convective terms
(left side of Equation (3.41) ) would, nevertheless have
to be retained if the Prandtl number of the melted layer
is large. However, he makes no mention of what Justil-
fication there would be to neglect the terms for unit
order Reynolds number that were omitted from the equations
on the assumption of large Reynolds number. No further
mention is made of what the values of the Prandtl or
Reynolds numbers are for glassy films and, therefore,

none of the simplifications indicated are made. It

1s then stated that for glassy materials the variations

in density, specific heat, and thermal conductivity are
small compared to the variation of viscosity with temperature.
Therefore, they are taken to be constants.
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The action of the aerodynamic forces and heat transfer
on the molten surface material ié described by the boundary
conditions. At the interface, Y = O, the shear of the
liquid layer must equal that of the gas layer

QU o) =_ U
Sy (0) = - "/p, (3.42a)
where'chis the shear stress and the .subscript i denotes
gas-liquid interface condlitions. The temperature of

the gas and liquid are equal.

T(0) =Ty ~ (3.42v)

In addition, there may be mass transfer into the gaseous
layer due to evaporation or pyrolysis of the liquid

film. In the former case the mass transfer is controlled
by the vapor pressure of the material and by diffusilon

in the boundary layer; in the latter case the chemistry
of the material is the determining factor. The mass
transfer condition is

v(0) = - my/0 (3.42¢)

where m is the mass transfer. Two additlonal boundary
conditions in the interior of the surface material must

be gilven. For glassy materials these are that at large

enough distances from the interface the temperature 1s
low and, therefore, there is no flow, l.e.,
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lim T(Y) = T, 1im U(Y) = O
Yo Y->o0 (3.43)

It is implicit in these boundary conditions that
the material is semi-infinite.

To convert Equations (3.39) and (3.41) into ordinary
differential equations, the mangler transformation (see
Lees(1956) ) and a similarity transformation are made:

X
s =P~ * j U, (X) R 2€ (x) ax (3.44)

g- [9/(2s)%] U, (x) RE (X)Y (3.45)
A stream function
Y- (es)2 ®(Q) (3.46)

is defined, where

e _ € __
Pure - 2 . Pwé —3F (3.47)
Also, let
T - T,
0 = --?-— (3.48)

where the asterisk denotes a reference conditlon, the
subscript ¢ denotes conditions at the outer-edge of the

gas boundary layer and the subscript o denotes the interior
of the solid. Equations (3.39) and (3.41) then become,
respectively,
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(3.49)

[(/U///*)ngg+ FCC +3[(Pér/P) - FEJ =0

* 2 * *
FO; + (k/cp/” ) 9§§ + (UC / cpT—) [(/”])v_)

N
where

B= 2 s(aUc/Qs)S /Uc‘

S denotes conditions at the stagnation point, and
subscripts denote differentiation. At an axlally sym-
metric stagnation point ﬁ3= % and B= 0 for flows with
zero pressure gradient. For stagnation polnt calculations
the last term in Equation (3.50) can be neglected because

2
Uc ‘:A;Cp

T%*,

Sutton restricts further consideration to the stagna-
tion point not only because the mathematics 1s much
simpler, but also because the greatest heating occurs
there and the gas boundary layer 1s most likely to be

laminar there.

The relations between the physical variables and the
dimensionless ones at a stagnation point are listed below
for convenilence

F = - [ (€ + 1) u* (a"c/ax)g P'l] oy (3.51)

F) = U/UO (3.52)
S

i
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1

3 39 -3
F§§ = - (Hxr/p) [(e+l)ﬂ*e( Uc/E)X)S } (0 T/ 3x)
(3.53)

0= (T - T,)/T% (3.54)

[V

- * oU Nl i
op = -(a/se [(6+1)(°( /%) 2 ] a (3.55)

=

§= [(€+ 1)0(3Uc/ax)§/-/f - ] Fy (3.56)

where q is the heat-transfer rate. The dimensionless
boundary conditions for Equations (3.49) and (3.50)

can be obtained by substitution of Equations (3.42)

and (3.43) into Equations (3.51) to (3.56). The melting

rate is given by lim V(Y).
Yoo

It can be seen from Equations (3.49) and (3.50)
that stagnation-point ablation depends on two parameters,
the viscosity ratio which describes how the viscosity
varies with temperature and the Prandtl number at some
reference temperature,cx)/u*/k. Since for most liquids
the viscosity-temperature variation is essentially the
same, the Prandtl number is the primary parameter. The
Prandtl number can be seen to be the coefficlent of the
convection terms in-Equation (3.50). Therefore, the
maximum effect of the molten film will be obtained with
high Prandtl number liquids. One could now infer that
Landau's and Goodman's work relates to liquids with
low Prandtl number. For this reason Sutton chose to
make his calculations for Pyrex since also 1ts high-
temperature properties are avallable. The thermal
conductivity was taken as 1.71 x 10™3 Btu/ft°F, the density
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131 lb./ft3, specific heat 0.29 Btu/1lb. and the viscosity-
temperature variation 1s approximated closely by

M = 0.0672 exp (8720/7)1012 16 /rt-sec. (3.57)
The density ratio G%J’P was taken to be 1.37 x 10'4
which corresponds to a Mach number of 18 at 90,000 f¢t.
altitude. At this altitude, the density ratio does not"
vary appreclably with Mach number. The interlor temperature
of the glass, To’ is assumed to be zero. The reference
temperature was arbltrarily chosen as’MOOOOF. The calcu-
lations were made on a REAC differentlal analyzer for
several values of the interface temperature, shear stress
and mass transfer. Sutton reports that preliminary
calculations indicated that F 2 and F were negligible
so that these terms were omittfed from éie momentum equation
(3.49). As mentioned above, however, these are the inertia
terms and could have been eliminated at the start on the
basis that a modified Reynolds number 1s small (as it
1s for the problem studied). In order to apply the results
to an actual case, my » Ui’ Ti’ a5 and‘Ci must be matched
with gas flow boundary-layer solutions (see Scala and
Sutton (1958) for the details of the matching procedure ).
However, the calculations were made using estimates of
the aerodynamic heat-transfer rate.

A typical set of profiles is shown in Fig. &4.
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All curves, except F resemble exponential functions
which might be‘expecs;d from the form of the equations.
Note also that the thickness of the flowing region 1is
much less than that of the heated region. Also at the
point of no flow, F¢-= 0, the value of the heat transfer
rate 9 1s about 70 per cent of its value at the interface.
This mggns that only 70 per cent of the energy originally
transferred to the interface 1s conducted into the non-
.flowing solid interior. In other words, about a third

of the energy is convected away by the liquid film.

Thus the presence of the fllm cannot be ignored.

For the conditions investigated 1t was found, as
expected, that the lnterface temperature increased monoton-
ically with interface energy transfer, but varied only
slightly with the interface shear stress and mass transfer.
A representative set of curves showing this behavilor is
presented in Flg. 5.
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A high interface temperature markedly decreases the
viscosity of glass so that the liquld flows more readily
under the action of a given pressure gradlent and shear
stress. The decrease in viscosity thus causes the surface

to recede at a faster rate as shown in Fig. 6.
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Hence as the heat transfer to the surface 1s increased

the rate, at which the surface recedes 1ls 1lncreased as

can be seen in Fig. 7; there the relation between heat-
transfer and melting rates can be seen to be nearly linear.

0 2 4 A 8 /0
Tlo* e!a
Vouration qf md‘th vete witl, heat "Hﬂmsfﬁ' rate
Flg. 7.

The surface shear or interphase mass transfer have negli-
gible effect on the melting rate over the range of condi-
tions studied by Sutton. The results of Fig. 7 were almost
exactly reproduced for calculations at other hypersonic
flight speeds and altitudes.

The calculations were repeated for common lime glass
whose high-temperature viscosity 1s much less than Pyrex.
For this glass the melting rates, lim V(Y), were five
times greater than for Pyrex with %ﬁ;asame energy flux
to the interface. Thus, viscosity plays an extremely
important role in determing melting rate.
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It 1s of interest now to compare Sutton's results
with those of Landau wherein the liquid layer was ignored
completely. For'glassy materials Landau's expression for
the melting rate can be modified so that, written in terms
of Sutton's notation, it is

1im V(YY) = -[ q1/€>cp(Ti - To)] (3.58)
Yoo

or, nondimensionally,

1im F(g) - (T* ¢ | / Pr* T,) (3.59)
Greo Ce '

Equation (3.59) predicts a value of the melting rate

which 1s too small by 23 per cent for T,;= 3000°F and 28
per cent tgo small for T, = 4000°F. This 1s to be expected
since most of the material that flows 1s at a lower temper-
ature than Ti' Use of the liquid-solid interface temperature
rather than T, in Equation (3.59) results in larger

melting rates being predicted from the simpler analysis.
Thus Sutton has shown the essential role of the liquid

film both with regard to the heat transfer and the

melting rate. However, Sutton's analysis neglected
transient effects, which he acknowledged are of greatest
technlcal interest and it is limited to the stagnation-
polnt of a body.

A great deal of work has been done on the problem
formulated by Sutton, see, for example, Bethe and Adams
(1959) and Roberts (1959). This work attempts to simpli-
fy the computational work of Sutton by using integral

v 643



Heat Transfer. 43,

methods (that yleld only approximate solutions) and also
treats the matching of the conditions at the gas-liquid
interface in a more convenient way so that the vaporiza-
tion effects and influence of gas turbulence can be -
studled more readily.

By using an inductive philosophy, i.e., choosing
specific relatively simple special problems, some of the
essential behavior of melting films has been determined.
Wheres some of the limitations and conditions of applica-
bility can, in retrospect, be detefmined by careful
'study of all these solutions, not all of them are as
yet apparent. Little or no comparisons among the varlous
special problems were made by the authors themselves.

It is also not certain at this point whether some other
important physical aspects have been omitted that may be
equally as important as those studied. The maln results
thus far are that the liquid layer cannot be neglected

in melting ablation studies for materials with large
Prandtl numbers. This type of material 1s best for
melting ablation because the large viscous forces (associ-
ated with large viscositiles) will prevent the molten

layer from leaving the surface before its energy of vapor-
ization has been utilized to reduce the heat energy to the
body and the low conductivity retards the heat flow into
the body and thereby yields a more efficient ablation
process.

4, Deductive Analyses.

Consideration will now be given to the deductive
analyses of the problem as represented essentially by
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the analyses of Ostrach and his coworkers (1960), (1962).
The approach in this work is to start from the most
general governing equations and then to analyse them

in detail to determine the governing dimensionless parameters
and the essential physical aspects of the problem.

Specific problems then are solved to show the 1nfluence

of the physically significant quantities on the ablation
process. In particular, the objectives of thils work

were to describe the dynamic and thermal behavior of
melting layers all around a body and to find the influence,
if any, of deceleration forces on the liquld layer.

The latter was considered because although reentering
bodies can be subject to a strong body force due to the
strong decelerations, the effect of this type of force

on the flow and heat transfer of melting layers had not
been investigated in general. In determining condlitions
away from the stagnatlon region, it would seem particularly
important to include body force effects, because for
decelerating bodies the body force could oppose the
downstream flow of liquid.

The specific problem analyzed by Ostrach and hils
coworkers is the thermal and dynamic behavior of melting
materials on the exterior of a body of revolution or
symmetric two-dimensional body that enters the atmosphere
at high speed and experilences a large deceleration and
surface heating. The viscoslty of the liquid layer
increases from some value at the gas-liquid interface
to very large values near the body because of the
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temperature change. Density, specific heat, and thermal
conductivity are assumed constant. For sultable materials
and expected physical conditions the thickness of the
region where the viscosity 1s low enough for the ablating
material to be considered as fluid is very small compared
with the body scale.

Some additional assumptions are made in the case to
be analyzed in detail in order to show the physical
phenomena most clearly and simply, In particular the
body 1s assumed to be subjJected to a constant deceleration,
although in an actual case the trajectory will determine
the deceleration rate. Furthermore the temperature at
the gas-liquilid interface is assumed constant, and the
vaporization rate wlll be neglected; indications as to
how these restrictions might be relaxed for a more

realistic calculation can be found in Ostrach et al (1962).

Because the liquid-layer thickness 1is small compared
with the radius of curvature of the body, a system of
coordinates parallel to and normal to the gas-liquid
interface can be considered as a Cartesian coordinate
system (see Fig. 1). The interface i1s taken to be the
surface Y = 0, and Y increases into the liquid. The
acceleration terms resulting from the unsteady motion of
the interface relative to the body are neglected but
this is considered as a steady veloclty at any instant.

The resulting equations of motion for the 1liquild
layer are:
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Continuity:

D v+ V) =0

X 224 (4.1)

where € = 0 for two-dimensional bodies and € = 1 for
axisymmetric bodies.

Momentun:
{ERURERE MR 2
A& -aC ) -2
P(SE v v H -8 - R EHR)
2 [P %) (.3)

Energy, neglecting thermal expansion of the liquild:

T T T\, [2°F . °F
Qcp (%E+U%7+V%"f)' k@? +§-§g)¢¢ (4.4)

Dissipation:
2 2
q)a /_/[2@%) +2@-¥) +2§-%3-X-+
(g_g.f +(§% 2} (4.4a)
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The transformation from stationary coordinates to
accelerating coordinates fixed in the body gives rise to
an equivalent body force @7&) per unit volume with the
components of equations (4.2) and (4.3), where A is the
acceleration rate of the body.

Scaling and Reductlon of Equation.

In order to compare the various terms and to determine
their relative magnitudes, all variables will be trans-
formed to dimensionless variables in such a way that they
are of order one; the magnitudes of the terms will then
be 1ndicated by the fixed coefficlents. This 1is, in general,
not a trivial or automatic procedure. A clear understand-
ing of the physics of the problem is essential to do
this properly.

For X and R the clear choice of scale is the body
scale slze L, so that

X = xL, R =rL .

The pressure, temperature, and viscosity are scaled by
thelr values at the stagnation point (X = 0) interface
(Y = 0), giving

IT=T0T’P=Pop /Z/=/U0/U

The Y coordinate 1is nondimensionalized with respect to the
liquid layer thickness, 6 » which 1is so defined that it
makes the ablation velocity (or rate), V., » Of unit

order of magnitude. An explicit derivation of this
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scaling factor is presented by Ostrach (1962). Thus
Yy=L¢§v.

Since there exists no'explicit characteristic
veloclity of the liquid layer, one is obtained by equating
the magnitudes of the viscous and pressure forces.

This implicitly assumes that 1iquid lnertia forces may
be less important. Therefore the characteristic
velocity W is found to be W = (BoL/ G ) &% so that

U=W‘uandV=W(Sv

The choice of a proper time scale poses another important
problem. One time scale, viz., L/W could be obtained

from the first term of the inertia terms. However,

because it 1s anticlpated that the viscous liquid velocities
could be.Small,-thié time scale 1s considered inadequate;
also the physical meaning of L/W does not appear to be
crucial to the problem. The energy equaﬁion provides

the only other means for the selection of a time scale.

As a matter of fact, this -1s the most important unsteady
effect, since the heating of the liquid will determine

the rate of softening and, hence, the rate of velocity |
increase. Because of the anticipated slow motion, the

rate of temperature increase should be balanced by the
conduction term. In this way the tlme scale Cfis

found to be J = (©c L2/k)(52' which is a measure

of the time required gor a change to be transmitted

through a layer of thickness L 6 . Thus £ =0t and

the dimensionless‘tiﬁe, t, 1s like the Fourler number which
appears 1in classical heat conduction theory (see the footnote
on page 25 of Carslaw and Jaeger (1959) ).
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In terms of the new variable the equations are

aériu) +a(ar'yv) (4.5)

rll,[g—};-+Re Pr52(ug%+v%)] _g\/ _( )
%R+26238_ ("ax oY [’Uay ax>] (4.6)

6—2[a—+RePr62(b——+val)]— dr

ot oy ax & ©

3842822 (a) 62 2[4+ 622

(4.7)

g% +RePr62<aX+v8— 6Qai£-> aiz+

oy

Pr W {(>+262 ) L,
7 8))

where r = R/L and the dimensionless acceleration g is

A OL/P oy

The small terms are deleted f'r'om these equations
on the assumptions that (5<< 1, Re 6 £< 1, Pr>> 1,
and

2

Pr ch WL!
p ©

for glassy materials at the conditions of interest.
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The analysis will be applied to the case of sudden heating
of the interface, whereéi— is initially indefinitely large
at y = 0. However, because of the small extent of the
region of softened material, g%L and g%- are not indefinite-
ly large. Thus the assumptions yield

2
aY(« -2 - s V1 -(§) = ) (4.9)
=begE~o (4.10)
- ﬁ( Q~ - va— g?. (4.11)

as well as the unaltered continuity equation (4.5).
Note that Equations (4.9) and (4.11) are coupled by
means of a viscosity-temperature relation so that, in
general, the problem is nonlinear and ﬁ= Pr Re62.

The fact that the main unsteady effect in the ablation
process 1is due to the unsteady term 1n the energy equation
was also mentioned after a qualitative discussion in the
stagnation-point analysis by Georgiev(1959). Because of
equation {4.10), p 1s constant through the liquid layer
at any fixed station X on the body and is equal to 1ts
value at the interface (p = p(X) = p, (X) = p(X,0) ).

The Newtonian pressure distribution is used for p(X).
The lmportance of deceleration is seen to depend on the
magnitude of the parameter g(= LA/PO) which represents
the ratic of the deceleration body force to the pressure
force and is, in a sense, a reciprocal Froude number.
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From Newtonlan fluid mechanics, the decelerating force

on the body is of order POS, where S is the projected
cross-sectional area of the body. If IS 1s the body
volume, and F)BLS the mass (‘DB is average mass density),
then the deceleratlion 1s

A=p/LP; or g-= p/PB . (4.12)

Thus for a reentering ballistic vehicle, g can be very
large, whereas for a meteorite g 1s of order unity. The
second parameter‘fa which appears in equation (4.11)
indicates the importance of heat convection relative to
heat conduction and depends ﬁpon shear stress (through
5 ) as well as properties of the liquld layer.

The initial conditions of the body for the sudden
application of boundary-layer heating are determined by
the assumption of a cold glassy layer. The initlal
temperature 1s assumed to be zero, so that

t = 0, T=u=v =0 (4.13)
At the interior of the body (y-=»eo ), the temperature
remains low, but the melting away of the liquid layer
results in a relative velocity V., Dbetween the interface

and the body. Therefore

Yy—o, T=u-=0, Vo= Vg (4.14)

o1}
i
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Ir Ya><'of the glassy liquld 1is beilng carried_away; if
Vo > O the liquid is accumulating. Because of symmetry

‘at the stagnation point,

_ T _4qu _ Qv _
x =0, g;,—g&-—g;-o (4.15)

At the interface, the temperature and shear stress of the
liguid are equal to those 1in the gas;

S T — 73U
y=0  Tg=T4 'Cg=t1='/"i(g?)1=
A
e Zali?

And finally the heat balance condition 1is

ke, (‘;—35)1 =k (%-2-)1 +PvyH (4.17)

as a restatement of equation (4.18) given by Lees (1958).
The convection of enthalpy by diffusion has been neglected,
since a noncatalytic wall is assumed. Also, the rad-
iation terms in the energy equation which are included

by Hidalgo (1959) have been neglected.

p_ OT, (4.16)

o

Equation (4.9) can be integrated for u, to yield

/ugl;- = -T, + ty (4.18)
v y
u = fwj }’, dy -0, J /%1 (4.19)

If some dependence of & on y (and x) 1s assumed, equation
(4,19) will yleld a solution for u, which when inserted
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into the continuity equation (4.5) results in a first-
order non-linear differential equation in x of the boundary
conditions with explicit dependence on y. Thus the
variation with x originates in conditions 1n the gaseous
boundary layer. The integral of equation (4.5) is

v-v<,‘,=——:-L--a-l"ejy u dy (4.20)
£ oOx\"

o)
Vy =V = - ;éax rew[ u dy (4.21)

However, the viscosity depends on the temperature, which
is to be found as a solution of a partial differential
equation with x, y, and t as independent variables.
Because of the complicated form for the convection terms,

the general solution of the energy equation 1is difficult.‘i

A number of possibilities are availlable to resolve
this problem. Hidalgo (1959) who also wanted to find the
ablation characteristics around a body used a Kdrmén-
Pohlhausen type integral method to obtain approximate
solutions, but he treats only the steady problem and gives
no velobity or temperature profiles. Furthermore, although
Hidalgo's basic equations contain a deceleratlon term,
no discussion or calculations of 1its significance is gilven
therein. Because one of the primary objectives of
Ostrach's work was to obtain some details of the structure
of the liquid layer, it was considered desirable to
simplify the energy equation somewhat and to solve the
approximate equation in detaill. The approach used by
Ostrach and his coworkers (1962) 1s to replace the
convectlon terms by a simpler expression that, however,
represents the dominant convection effects. The details
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follow below. Another approach, to be described sub-
sequently, is followed by one of Ostrach's students, Mr.

D. McConnell,in his doctoral thesis. This 1s a pertur-
bation method in the parameter ﬂ , since for quartz,
l3= .09 and for Pyrex = 0.2,

The convection term, u OT/AQX, 1s eliminated by
Bethe and Adams, because their analysis 1is limited to
the stagration point where u = @T/9X = 0; also for
thelr steady-state problem they further simplify the
equation by replacing v by Veo , the ablation veloclty.
Carrier (1958) describes a formal method by which the
latter simplification can be made with good accuracy.
Ostrach et al. (1962) made the same simplifications
(as Bethe and Adams) for their more general problem with
the following justification. 1In the first approximation
it is assumed that the interface temperature Ti(X,t)
varies only slowly with X. Only in the thin region where
'I‘"\-"I‘i are there appreciable flows, so that the effect
of convection in this region of nearly uniform temperature
is small. The only important effect of convection 1is
then the transport of the high-temperature interface
toward the body as the viscous liquld layer is swept
away or evaporated, 1l.e., the convection along the body
is neglected relative to that normal to 1it. The energy
equation with these assumptions reduces to

2,

9T T _ QT

S5t +ﬁ Voo 37 ai’zy (4.22)
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A discussion of thelerrors arising from thils approximation
is given in an appendix by Ostrach and his coworkers |
(1962).

The inadequacy of the steady-state approach for
application over the whole body (suggested by Bethe and
‘Adams (1959) and used by Hidalgo (1959) ) can be seen by
integration of equation (4.22). For steady state there
is obtained

gl:.q'_‘!. eﬂvﬁy
dy dy i

This equation shows that dT/dy is unbounded as y—»eo,
in regions of X where Ve > O, 1l.e., where there is

an accumulation of liquid. Such regions can exist
‘and should not be precluded by the method of analysis.

At the stagnation region, v, < 0, so that no difficulty
arises there. Although the energy equation (4.22)

from which this result is derived is of questionable
accuracy near the interface, it closely describes condi-
tions for large values of y. The essential unsteadilness
determined from the analysis can be explalned physically
as follows: Since the gas shear and pressure forces
decrease around a body, at some position they can be
insufficient to move the molten material. With continued
heating the liquid viscosity decreases, i.e., the layer
becomes thicker and the pressure force 1s larger soO that
the liquid can move again at a later time. This situation
is accentuated if a deceleration force is present, because
it can dominate the gas shear and pressure forces at some
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location along the body. The deceleration force acts
like gravity on a liquid layer clinging to a wall. The
liquid will, therefore, slump forward. Because of the
equivalence of conditions at all locations far back on
the body the liquid motion will approximate that of
uniform layers of fluid sliding over each other. The
continued application of heat will cause a growth in
thickness of the thermal layer on this section of the
body so that steady-state conditions are never attained,
i.e., the 1liquid behaves 1like a heated semi-infinite
slab that is characterized by unsteady effects. Secondly,
the forward slumping flow from the back region and the
backward-swept flow from the front region will meet at
some 1lntermediate station where the fluld will continue
to accumulate. (This result will be modified when the
accumulation of material 1s sufficlent to alter the

pressure distribution.) This region will also not approach

a steady-state condition. Near the forward stagnation
point, a steady-state solution is nearly attailned.

No detalls except results of the computations made
by Hidalgo (1959) are contained therein, but because
of the reasons cited above, those numerical results
could not have included deceleration effects. The fact
that no discussion of these effects is given therein
seems to substantiate this supposition.

Method of Solution.

The boundary conditlons for calculation of the liquid
layer are not all knowna priori. At the interface there
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must be a match of temperature, shear stress, heat flow,
and mass evaporation rate. If a temperature distribution
Ti(x,t) is assumed, all other quantities may be calculated
from solutions of gaseous boundary layer. Varlous methods
of making this match can be used (see Scala and Sutton (1958),
for example); in addition to the description of some of
these methods contained in the previously mentioned refer-
ences, a comprehensive discussion of this problem 1s pre-
sented by Lees(1958). In the present analysis the gas
boundary-layer characteristics of Cohen and Reshotko (1956)
were used for the assumed Newtonian pressure distribution,
and hence the calculations (but not the analysis) are
restricted to the class of bodies for which those similarity
solutions apply. A representative two-dimensional body of
this class is shown by Ostrach et al. (1960); for axisym-
metric bodies (see Figure 8 for the one studied by Ostrach
and his coworkers (1962)) the Mangler transformation is
applied to permit use of the results of Cohen and Reshotko.
Since this procedure of using exact simllar gas solutions 1s
rather lengthy and involved and i1s not as convenient as
direct use of the tables of Cohen and Reshotko; which
can be used for any body shape, the details will be
omltted herein.

Onemay expect on solving the liquid-layer flow and
heat-transfer equations that a discrepancy will exist in
the heat balance for each assumed interface temperature dis-
tribution. From several assumptions of the interface temper-
ature distribution Ti(x,t) it should be possible to find a

distribution by interpolation for which the heat balance
conditions are satisfied. This procedure could be applied at

each instant of time starting with the value at X=0 and working

downstream by integration of the continuity equation. For
the problem considered in this paper, of suddeB application
of the hot gas, a selection of T(S,0,%) = 4000°F(and T,=1.0)
was chosen in order to permit a solution which will in&icate
the main kinematic features of the liquid glass layer as

a whole and to show time and x variation of the heat flux
parameter (?éf) . It was also assumed that

9Y/4
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there 1s no evaporation, that. 1s,
vy = v(x,0,t) =0
The energy equation is integrated directly to give
T _
'].‘=-—i eﬂvmyerfc-l-(y/\/t +ﬂv Vt) +
2 2 @
1 W[__
erfc 5-(Y/ - /3VG;V@3] (4.23)
for the assumption that both Ti and v, are independent
of time but vy, is a function of x. These assumptions are
more realistic for t large rather than initially (t small).
To complete the solution, there is now required an

explicit form for the dependence of # on y. For this
purpose, we assume

/U =/ exp(ay + by?)

The functions "a" and "b" are determined from the assumed
dependence of viscosity on the temperature;

N = (/)

If we differentiate,

l/d _ _ dT - 1
E(ag)i e <-d7)1 /Ty = —n?
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From equation (4.23) the required gradient T' is found
for 1ldentifying a:

1 QT — o -
T1%5’>1—T

The quadratic term is determined by the temperature
at large values of y, where equation (4.23) 1s approxi-
mated by

N -

%V erfc ﬁv@v—g- i e’ﬂ 2va2° t/u]
@ -2 -\/’7_771:

(4.24)

m > exp (-y2/4t +/32” y/2 - ;32v§,t/u)
-']-)—N

1 VI y/ VT - B E Ny

The dominating factor in determining the rate of decrease
of the temperature at large y 1s

exp (-y°/it)

Hence we choose b = n/4t, from which

K =M exp[ -n(T'y - y2/4t)] (4.25)

with this viscosity relation, equation (4.19) may be
explicity integrated to

exp 0 (1 - ¥z _;[ ° > - y]

u=-

n(T' - y/2t) M1 nT' (1 - y/2tT

+ Ié:[l - e . ]
Pl en(w2 Ve - TE)°

(4.26)
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where the abbreviations are
- 2 VTF o 2°
0 = 22° (1 VI ze* errc Z)
=Vn (v Vi -1 Vg t)

N
i

Also, by integration of the continuity equation,
2
et/ bt o/ & VT f
n°r€ 9% (T - y/2t)

9 Vo
TR + 2T (0 1) + }-:) (4.27)

At the interface v = Vys 7Z = -\Vnt T'= Zi’ 0 = O

and

9, -1\"
! aille ! 1 1
Vy "% = —2‘;6' é% —/—/;F -f [m-r + 2tT! 5, ]""Cj}

n
(4.28)
At the stagnation point r =x, £ = x(%xf-')o, ’-E’i =
d
b4 —x A =1, T =T!, 9, = constant, so that
& ) LT 0’ 1 g ,
a7,
e
- - _ X 1 (df 1
ui(x =0) = - nT'[nTo' (dx)o + dx)o
% (4.26a)
11 + — .20a
2ntT! (o 1)
1 +€ ar) | 1 . o~
v (O) - Voo (O) T‘z 90 -(ﬁ)o[ﬁg + QtTo —T—]

A n TO
+ a_x_ﬁ> (4.28a)
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The limiting steady-state case is obtained when t is large,
Zi = - ‘\/nt T!' 1is large, and

1.5 1,5 1.5
e~1 - -1 - -1 -
z° nt(T! - y/2t)° ntT!

At this point the problem is completely solved for
dependence of u, v, and T on X, y, and t, provided the
dependence of the boundary parameters, v, , T', Ti’

e and 1:1 on the variables X and t is found. For our
approximate solutiqn, vy = O, but in general the temperature
balance (Ti = Tg) will determine the vapor pressure of

the components of the liquid glass and the diffusion

rate through the boundary layer (see Bethe and Adams

(1959) and Baron (1956) ) will depend on the external
conditions and the wall temperature. Similarly the

shear stress and heat transfer will depend on 'I'i and
external conditions. This leaves Ty and vgg to be

found from equations (4.24) and (4.28).

Numerlcal Procedure.

To solve for the parameters veg and T' which are
required before u, v, and T can be calculated, equations
(4.24) and (4.28) must be solved simultaneously. To |
facilitate the discussion, the differential equation
(4.28) 1is written in the form

Voo = V4 = —i? -a-ax- r€ (Br + ¢ 'Ci) (4.29)

where B and C are functions of T' and t. On differentiation,
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o - v, = B2 ve L )+c fig;;)
[(fa—%- +'C a—ﬂ)a '} (4.30)

from which, together with Equation (4.24), the nonlinearity
i1s apparent. In the particular problem solved (the first
approximation where @1 =7,

o
af
& = °)
dvg,
i1t was found that the coefficient of a——-was a small
quantity; at x = 0, the conditions f = = 0 cause the

coefficient to vanish there. Once agaln, then the problem
is of the singular-perturbation type with, however, the
additional complication that the coefficient of the
highest derivative term 1s variable. Therefore, it can
be immediately concluded that Ay, /dx must be very
large near the stagnation point (x = 0). The usual
integration procedure was therefore found to be unsuit-
able 1n that successive approximations to the solution
at a point frequently failed to converge. Equation
(4.30) was therefore solved for the term Vo, by writing
the equation with numeridal‘evaluation of the derivative
from the argument itself:

dvg
Y =D +E g =D +s8 (sTBgE 4 gt

stvi )  (s.31)

where the definitions of D and E are obtained by comparing
Equations (4.30) and (4.31) and st denote weighting factors.
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This method of solution encountered difficulty in
an intermediate region for certain cases of large time
and deceleration; the possible cause of this failure
will be discussed subsequently. In those caSés it was
possible to begin the solution at x—»ee, leaving an
intermediate region with the solution undetermined. For

large x, it was assumed
AVeo

w= g "~ ©
Results.

In the example calculated the ablating material was
taken to be Pyrex and the conditions assumed were (similar
to Sutton's (1959) ): Flight Mach number, 18.0; altitude,
90,000 feet; L = R, = 1 foot; L= 131 1b/ft3 k = 1.71x1073
Btu/(ft)( F)(sec), = 0.29 Btu/(1b)(°F); ,u (at
4000°F) = 0.07 slug (ft)(sec) Body shape 1s shown in
Figure 8. From these 1t is found that Pr = 383; Re =
79.6; 5-— 2.510x10 -3, ﬂ— 0.1929; W = 1.370 ft/sec; F =
3. 446x103 ft/sec. For Pyrex under the conditions
of the problem a value of n = 8 was assumed. The :
gasious boundary layer adjoining the liquid layer was
assumed to be laminar throughout its entire extent.

(See Figure 8 on following page)
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Radius of bady , ft+

R T T T

0 / 2 3 L g 7 8 9 /0 "
D?s‘f'nn<¢ a/o”‘, bad, Su;«fau 7 x, f‘ﬁ
Shope of AL/@‘Hng Body
Fig. 8.

Development of the normal interface (ablation)
velocity, Va7’ along the body for no deceleration force
is shown in Figure 9.

Filg. 9.
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Recall ve&<O 1ndicates thinning of the molten layer.
Thus, fluid leaves the stagnation region and tends to
accumulate downstream, because the shear and pressure
forces decrease away from the stagnation point. At some
later time, as mentioned previously, the thicker layer
results 1in a greater pressure force and liquid moves
rearward in a wave pattern. Therefore, away from the
stagnation point there exists an accumulation of molten
material into a slight bump that is followed by ablation
as the bump moves down stream as a kind of single wave.
Note that no wave motion is predictéd during the initial
ablation period. The corresponding interface normal
temperature gradient (heat flux) is shown in Figure 10.
With increasing time the temperature gradient decreases

¥, SEC.
‘“:\\\‘ 0.4

INTERFACE TEMPERATURE GRADIENT, T', DIMENSION LESS

—-——

DiSTANCE ALONG BOOY SURFACE, X, FEET

Fﬁg.lo‘ Interface temperatuve gradient distvibution. No deceleveation.
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from a relatively high uniform value, as might be expected
from the initial sudden application of T = 1 and relatively
small convection, to a lower steady-state value near the
stagnation region. The temperature gradients for very
short times cannot be accurate, because the gas boundary
layer, as a result of thickening, will provide gradients
which decrease as X lncreases, whereas the figure shows
constant values. Steady-state conditions 1in the stagna-
tion region are approximately attained at t = 29 (correspond-
ing to 4.1 sec) at which time ablation 1s proceeding at

the rate of vg~ -1.25 (corresponding to removal of material
at the rate of 0.052 in./sec). At all times the most
severe thermal load 1s imposed at the forward stagnation
point. This is easily understood to occur because (1)

the thickness of the gaseous boundary layer 1s a minimum
near the stagnation point and (2) there is a large neg-
ative normal velocity, which results from the flowing

away of material and which reduces the thickness of the
thermal layer.

Details of the structure of the viscous layer for
no deceleration are shown in Figure 11.

. ( ,
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All temperature profiles are about the same for short
time, but with increasing time the stagnation-point
profile approaches a steady-state curve, whereas the
others are all nearly the same as for unsteady heating

of a slab. (After X = 0, the next profile is selected
for such a value of X that v, = O; therefore uy is nearly
a maximum there.)

Deceleration of the body gives rise to changes in
the behavior of the liquid layer as. shown by comparison
of figures 12 to 14 with previously mentioned results.
The normal interface velocity at the stagnation point
is reduced 6 percent for maximum deceleration. Farther
back the calculations break down in a region where the
normal interface velocity vg,exhibits large gradients.
The 1nadequacy of the equations used herein to describe
the condition in this region probably arises from the
failure of the boundary-layer assumption (1.e. that

h/L4<«1) because of the accumulation of fluid and
thickening of the liquid layer. The results of the
present calculations show this region of large positive
normal veloclty v, , which results from the fluid arriving
from the forward section by boundary-layer drag and from
slumping forward of material from the back end because
of deceleration; at this locatlion the forces balance.
The accumulation of liquid into a bump may be directly
inferred from the normal interface veloclty (Veo )
curves of Figures 12(a) and 12(b). Definite values of
Veo and the growth of the bump slze cannot be given
because of the failure of the backwards and forwards
solutions to coalesce, but order of magnitude
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interpretation of the curves indicates the growth rate
to be comparable with ablation rate at the stagnation
region. Calculations could be made downstream of the
critical region because of the small influence of the
derivative and the resulting local character of the solution.
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The failure of the solutions obtained by forward
and rearward integration to match in the regilon of liquid
accumulation is not surprising. 1In general, two asympto-
tic solutions (here for small and large distances from
the stagnation point) cannot be joined without careful
analysls. Sometimes the matching 1s further complicated
because of the occurence of a singularity in the inter-
mediate region due to the omission of terms in the
asymptotic equations which are éignificant there. To
match the asymptotic solutions properly in such a region
the analytic form of the solution there must be found.
For the present problem there appears to be a distinct
possibility of finding the solution of the Navier-Stokes
equations in this accumulation region because the inertia
terms should be negligible there. Further consideration
is being given to this point. '

The interface temperature gradient approaches very
small values at the bump because of the accumulation of
the hottest liquid there. The temperature gradient at
the stagnation point is reduced only 3.5 percent for
maximum deceleration under the. conditions of the calcula-
tions.

Both the velocity and temperature profiles for
high deceleration rates show clearly a dissimilarity of
shape at various locations; there is even a case of flow

reversal which results from the opposing effects of surface

shear and body force. Such deceleration effects are
qualitatively described by Cheng (1958).
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A iarge accumulation of material in a bump will
probably not be realized in a real sltuation because it
would be torn off by the airstream if 1t grows
sufficiently large.

The heat flow from the gas to the liquid was calcu-
lated at the stagnation polnt to be 53,200 Btu/(ft2)(sec)
by the method of Fay and Riddell (1958) and the results
of Lees(1958) for qi/qo for a hemisphere were used to
estimate the value elsewhere. If vaporization 1s neglected,
the temperature gradient in the liquld at the interface
is then 311,000° F/ft. On a dimensionless basis, the
stagnation-point temperature gradient approaches the
limit

Tt = 311,000 OL/F, = 0.1755

This value and those at several other locatlons are shown
in Figure 13. Thus, the heat load estimated from the
liquid layer herein is too high. This error follows

from having taken too high a value for the interface
temperature.

The temperature gradient of the liquid at the inter-
face will depend on the ablation rate vy, , which, through
the viscosity, wlll depend strongly on the temperature.
Thus an assumptlon of a lower temperature will greatly
reduce the Interface temperature gradient and heat
flow; closer agreement with other results (Bethe and
Adams (1950))can then be expected.
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For a very short time, the correction required is
much greater; the corrected temperature will, therefore,
rise from a low initial value to the final equilibrium
value.

The general deductive-type analysis of Ostrach and his
coworkers (1960) (1962) has thus led to the following
results:

1. Flow, temperature, and heat transfer in the
liquid layer depend on the deceleration parameter g =
APL/PO, the heat convectlon parameter ﬂ = Pr Re 62,
and the body shape 1in addition to those quantities
already found for the steady-state condition at the
stagnation point.

2. A steady-state solution 1s possible only in the
forward part of the body where v_,< 0. On the aft part
an unsteady solution 1s required.

3. Similarity solutlions are not possible; the velocity
and temperature profiles vary radically in shape from
one portion of the body to another and at different
instants of time.

4, The heaviest heat load and ablation rate occur
at the stagnation point; deceleration affects these
values slightly.

5. An accumulation of fluld occurs in the regilon
where body, shear, and pressure forces are approximately
balanced. This might cause a substantlal change in the
body shape for small bodies where the fluld will be blown
off a shoulder rather than flow off the back end.
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Thus limitations of the various studies are made clear
and new physical phenomena are described by the general-
type of analysis.

Numerous specific problems, in accordance with the
inductive-viewpoint, were studied concurrently with
the development of the general analysis described above.
In particular, Fanucci and Lew (1959), Hidalgo (1959)
and Tellep (1959) all were concerned with conditions
away from the stagnation point. PFanucci and Lew used an
integral approach and assumed steady flows. .The form
of their assumed velocity profiles precluded the occur-
rence of flow accumulation and back flow. Hidalgo also
used an integral approach for steady flows and although

he originally included a deceleration term in his equations

gave it no further attention. Tellep also treated the
problem as a steady one and chose a very special con-
flguration so that similarity solutions could be obtained.
Clearly none of the unusual features of the problem can
be described by similar solutions. Recall how dissimilar
the velocity and temperature profiles are from Ostrach's
solutions. Thus, the significance of all this work, if
any, 1s questionalbe in view of the assumption of steady
flow and the special types of solutions that do not
permit accumulation and backflow. Certainly, the rela-
tion of these special problems 1s unknown.

In a similar way Georgiev (1959) and Chen and Allen
(1962) attempted to find the unsteady characteristics of
ablation. Georgiev restricted his consideration to the
stagnation region and concluded, 1n agreement with
Ostrach and his coworkers, that the unsteady effects

650




Heat Transfer. 73.

there are not too important. Cheng and Allen introduced
only the unsteadiness due to time-dependent gas flow
veloclities, but neglected unsteady thermal effects in
thelr stagnation point analysis. This work is essentlally
a generalization of Sutton's analysis, but no Justifica-
tlon is given for neglecting the unsteady thermal effects.
Cheng and Allen find that acceleration and deceleration
effects are very important.

The work of Ostrach and his coworkers has recently
been extended by one of his students, D. McConnell, in
a doctoral thesis. Since some of the simplifications
of the former work are related to conditions at larger
times, the initial period of melting is studied in more
detall by applying the previously-mentioned perturbation
method in the small parameterﬂ that indicates relative
convection and conduction effects. In order to match
interface conditibns more easily McConnell specifies
the interface heat flux in terms of a gas heat-transfer
coefficient rather than an interface temperature. Finally,
McConnell considers a spherical body rather than an
aerodynamic one as was the case in all previous work.
Interest in the tektite problem motivated the study of
this shape.

The governing equations and boundary-conditions for
McConnell's analysils are the same as Ostrach's, 1i.e.,
Equations (4.5), (4.9), to ( 411), and (4.13) to (4.16).
Equation (4.17), however, is now written as, neglecting
vaporization,

Hoes1
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é = n(x) (1, - T,) (4.17a)

where h(X) i1s the heat-transfer coefficient (assumed

knowi from the gas flow) and T, 1s the adiabatic wall
temperature. The body 1is again assumed to semi-infinite,
but the shear stress]:(x) and h(X) approprilate for spheres
are now used.

The fact thatﬂ is of the order of 0.1 for materlals
of interest suggests a perturbation expansion in powers
of/ﬁ for the solution of the problem. Since the limiting
case of‘/g equal to zero corresponds to pure heat conduction
which 1s relatively easy to describe and which 1s the
dominant state of affairs at the onset of the ablatlion
process, such a solution should give the desired type of
information for short times to supplement'the essentially
quasi-steady solutions of Ostrach and his coworkers.
Accordingly the expansions

T =Zﬂn T, u =Zﬁn U, v =ﬂn v, and & =Zﬁn/0n

are substituted into the governing equations and the
power-law viscosity-temperature relatlon to give

fgrx Lé% (r un) *-i%% (r vn) =0
d [ du,
ool dge b

3\1
[§Q3y+ﬂla—+/j2r] . . .= 0
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2 2
?_'I‘_o-aTo+ aTl+uaT°+va_io__all‘l.|.
¢t 252 B\gt + % B3t Vo CEA
2 (3%, ar, ar, 81,  ar, T,
ﬁ é——t—+ul-5—f+uo§—f+vo——a—§+vl=a—§-—a—y? + ..

n(ntl) o % -(n+2)]+ e =0

o1 170

The boundary-conditlions are satisfied by the zeroth-order
solutions and homogeneous conditions are imposed on the
higher-order ones.

Thus the zeroth-order (in B) problem is

3,ru_ .B(PVO
Sl —gv - o

2 (p2Y) = £(x)

oY oy

2
3T0=3T0
gt BYE
/00"’1'0-n

with
- Qu _ QT _ - - -
v =0,/ 'Ei(x),ay n|1 '?1 T, =T, aty
T=u=0 at y—>co
u=v="T=090 at t =0
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The zeroth-order temperature 1is immediately written
as '

T, = erfc (y/2"\/€) - exp(hy + h2t) erfc (y/2-\/’€ + h2t)

From this, the viscosity relation, and the conditions

on u the equation for u_ can be solved to give

o’ (o}

u, = £(x) fym [erfc(m/g'\/_t-) - exp(hm+h2t) erfc(m/2‘\[§+
© i . ‘ h
h\/?)] dm +
T;i(x)jy [erfc(m/2-\/-€) - exp(hm+h2t) erfc(m/2'\/€+h"\/z)] .’gm
For convenience letcs m/2Vt and @ = nVt then
2Vt y/ave
uo=4ftjy/-\r_ ¢ d€+ etiﬁ'y/ F dc

where
F(g, 6 = erch- exp(2C0 + 92) erfc ((: + 0)

From the continuity equation there is then obtained

' veVe (& n(T,) " (2
v =-alze) ' 3/if jCF“ W % ri) :J’ Jan dg g - g™

Qo

oﬁ:(%ﬁ‘—;—) dc dﬁg - 4,5;15‘[%-\/%}%%@; ag dg
But *

faL}F(' =g% }9(= -[2(C+9) exp(2CG+92) erfc(§+9) - (2,:/‘\[7]")
. exp(-ca)]gﬁa -(2AfT) exp( —CQ){2(€+G)
] I

lpe

[%(z«»—or AESE *] 3
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so0 that

a;,\, exp(-G2) @g)

C+ Q) ox

Also
AF _ _ 50 exp(2 Co + 0®)erre( L+ o) 28 ‘§2 1 -
az R © 2[3+0)

1 + ...
b,(z+e)3

80 that

g%m-v%@f ) exp (-gz)z-jfexp (-¢3)

on the basis that CLéG or y/2h< ¢t. For a particular
y this places a lower bound on t for which the expansions
are valld. Combination of the two derivatives of F ylelds

FoE R Hw

s0 that vo can be written as

ol Ty 5 4(rTy)*
vo—-8-(—£lt3/2 oj Qandcg t

y/2vt 1 0
J Jgf*‘ ag ag+ I’g%f :j%%F;E—) %

_V'- o

Ay 3 oo

o]
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Now

jjg (S ) e §‘ﬂ[§F (£, 9)-j£ " (¢, °)d§]§
f'& (§,0)d§ -ng (§, o) % ﬁj (C.o) "

- ‘h °
= n = y . -
oﬁJ’ (g-g—)d d (&) d§. ,,jF (f,e) d§ ‘J
" (€,0) ag
All the integrals have either of two forms, so define
x, (§9) =j§ F" ((,0) dg FCF" (,0) ady
S
k55,0 = [ 10 G (f 0) j Ky (60 ¢
and the zeroth-order solutlons can be summarized as
T, = erfc (y/ZW/ES - exp(hy +F]2 t) erfc (y/2\[€’+ hJE)
uy = bt ky(V/2V, We) + 2 T, Vo Ky ( Y2 Ve, he)
vy = -8(ze) (372 (V72 Ve, Ve - ! t - kg (V2 Ve, Bk)

o

. brhl [ k(Y72 Ve, o) -k, (o,h‘\fc-) - ky(Y/2V, We )]
o 2’5722"/— [kl(y/g'\/?:ﬁ\/?) - kl(O,ﬁ\FC.)]

where primes denote differentiation with respect to x.
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The first-order correction functions are found

from
E}(ru Eerl)
5—— Qv
/(/1 + Che!
¥ A o
o1, d°T, aT, 97,

3 ° 8y2'(u06'>?_+vo 2%

~(n+1)
/L/l +n TlTo = 0

with the initial and boundary conditions

v, =0, 29 1/0y = 0at y = 0; Ty = 0, u; = O at y =00 ;

T

1 U =vy) = Oat t = 0,

The nonhomogeneous term in the energy equation 1s a
product of the exp(- ya/ 4t) and terms involving the
integrals. The exponential behavior in y dominates the
integral variations so the latter are replaced by their
1imiting values. Then the Fourler Cosine transform can
be used to solve for Tl' The other functions follow
from the remaining equations so that

T

, = -(1/+m) [ G(x,t)] exp (-y°/it) |
2ft[(y/2w/?) P (G, 9) - i (C,e)]+ti\/?'pn (¢,0)

’.3/2
v, = - 44(gf§1 £ [kg( C,o? - k,(0,0)- k3(C ,o)]
2(rT,a) t 1 orch's

\ >
-—'—'_—* k ’g‘ - k 0,0‘]- —— x
Co) [y @ - 0] 2

Uy
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[gF“-z(kl(g,o)-k ] T"—;g—[F“(Co)-
F“(oe)]

where

G(x,t) =

2
5

' T ! , \
f—L‘--é- (ky/0,8) + k(a0 ,9))] £3/2 4 %[ 1 p;l:l(o 8 £

The second-order correction for the stagnation region
was also found but the details will be omitted here.

r

[ 8 £I‘_fl )]t;2 + 2[ (Ty) ky(c0,0) +

The perturbation analysis, Just presented, describes
conditions from the initial state onward. The analysis
of Ostrach et al.essentlally moves backward in time from
an anticipated steady-state condition. It 1s, therefore,
desirable to compare the results of the two schemes.
Thus a quasi-steady analysis similar to Ostrach's will
now be made with the exception that the Ilnterface heat
flux will be specified. 1In this way a relation between
the heat flux and interface temperature is immediately
obtained (Equation (4.17a) ) and the interface matching
is simplified thereby and, furthermore, the interface
temperature can be variable which 1s more realistic.
The argument for simplifying the convectlon terms has
to be modified from that given by Ostrach and his coworkers,
but it can still bve Justified. Thus the problem 1s defined
by
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QT 3T _°r

o°F + B oY %E

o e +T
1 ! 1 |

T T T aaxojm 4}(m,tr) % e

M (m,t) = [T(m,t)] -
with

§—£+h(maw-wi)=o for y = 0 £>0

T (y,O) =0

A closed-form solution can be obtained by Laplace transforms
with 2 &(x) =Bv, , viz.,

1 ¥y - 2t : ) v + 2K ¢
T = fe + 24 rf —
79 er Ve T eXp vl eric 2t
2(h -ot) [ 2 y - 24t
- exp - 24t) + I’] t] erfc ( + '\/70-
(h - 2«) hiy : 2Vt h

This solution is valid for all times for voth positive and
negative values ofel(1.e., V, ). Furthermore ife = 0
the conduction solution 1s obtained. Ifo(<L O the asymptotic

temperature has the form

Tasym%-h-—_—ro( exp (20(}7)

This corresponds to the exponential temperature variation
often assumed and it indicates an interface temperature.
If this interface expression is substituted into the
equation for vo, there results
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4 1 2
(2 ) gy = P ’ETT )" (rrf) (22n)3 *
(«T))'
r (%n)Q

This then 1s the time-independent value of Voo That could go
together with the boundary functions h(x), f(x), and
'Ci(x) to form a steady system.

McConnell carried out calculations for the same
specific case treated by Ostrach and his coworkers so
that the results of the two studies can be compared. On
Figure 15 1is shown the stagnation-point interface temper-
ature computed by both McConnell's perturbation and
quasi-steady solutions; the interface temperature assumed
by Ostrach and his coworkers is also shown therein.
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The latter 1is higher than either of McConnell's results

but this 1s because Ostrach did not match the heat flux

at the interface to obtain the lower value. Note also

that the quasi-steady solution predicts a lower interface
temperature than the perturbation solution. The reason

for this can be more clearly seen after consideration

of Figure 16 which presents a comparison of the stagnation-
point ablation velocities predicted by all the analyses.
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As expected, the values predicted by Ostrach et al. (1962)
are larger than any of McConnell's values. Ostrach's
values follow, of course, from his higher interface
temperature. The quasi-steady analysis predicts a larger
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value than the perturbation analysis. This can be explained
by consideration of the asymptotic interface temperature
relation T, = h/(h-z A ), where recall 2£«£0, If the
asymptotic value of the interface temperature is specified
then both T1 and h Will be overestimated for small times;
thls leads to an overestimate for |2dl for small times,
The same applles to Ostrach's results. In the present
analysis h 1s specified and an overestimate of laobl

leads to an underestimate of Ti“ The quasli-steady analysis
overestimates [214 because it overestimates the small

time effect of |24| on the temperature distribution.

The perturbation solution. shows that for small time the
temperature 1s essentially that due to conduction; whereas
the quasi-steady solution immediately takes account of

any motion that exists. Figure 16 shows, in addition,

that the zeroth and first order velocities tend to diverge
at about t = 22.0 so that the perturbation analysis can

be considered to be valid until that time. Figure 15

shows that at t = 22 the interface temperature appears

to be leveling off at about the asymptotic value predicted
by the quasli-steady analysis. Thus it can be concluded
that the quasi-steady analysis reasonably describes the
long-time behavior of the ablation process.

The ablation velocities around a spherical body are
shown on Flgure 17. These calculations were stopped at
the point of separation of the gas boundary layer as
predicted by Meksyn (1948). For these particular
calculations, the gas boundary-layer shear and pressure
gradient were calculated from Meksyn. It 1s seen that
even for early t;mes, the rate of change with respect
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to tangential distance, aVﬁ*”/a X, 1s of unit order of
magnitude. This 1is 1n accord with Ostrach's results
(Figs. 3, 5 and 6 (1962) ) and contradicts those of
Adams (1961) who stated that © Veo /8 x = 0,It can
further be seen that a 250 percent change in glg =
~-0.51 to g = -1.3@) results in only a 20 percent change
in stagnation point ablation velocity.
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1.0
2.0
v-\'l‘ |
[~=~.5.0
0.0 / =g

/
9 o4 0.8 L2 ‘e

Distanec alony body surface, X
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.0

'\f-m
: ;\* 8.0
[

v

%0
£ /7
3
2 0 A
>~ /
-20
0 0.4 0.8 1.2 1.6

Ristance along body surface, X
Fig. 17.
Ostrach also showed that stagnation conditions are not

strongly affected by deceleration effects. Note also that
no wave motion is indicated by the early time solutions
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and this too is in accord with Ostrach's results. Finally,
the 1nitial increase in stagnation-point radius of curva-
ture 1s indicated here as predicted by Chapman.

A concurrent experimental study was made by McConnell
in a vertical windtunnel with heated gas flow upward and
spherical tar-balls used as the test models. In this way
the gravitational force simulated deceleration forces
and by varying the gas flow rate the parameter g can be
made to take on a range of values. Photographs of the
melting process were taken and the temperature at the
bottom of the taf layer (which covered a wooden sphere)
was measured. Recession of the stagnation point was
measured from the photographs.

The photographs show the significance of thevparameter
g€; for larger g the melt accumulation i1s closer to the
stagnation region and the surface waves can be seen,

The ablation velocity was determined from the
measurements and the results were compared on Figures 18
and 19 with the theory. Figure 18 shows results for
+" layer of tar; good agreement with perturbation
solutions to t=~7. For a long time it was not close
enough to quasi-steady because the layer was all melted.
There, the tests were repeated with %" layer of tar.

Now we can see that fort > 28 agreement with the

quasi-steady solution is good. Similar temperature
comparisons were made.
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